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Although higher-order cognitive and lower-order sensorimotor abilities are generally regarded as distinct and studied separately, there is
evidence that they not only covary but also that this covariation increases across the lifespan. This pattern has been leveraged in clinical
settings where a simple assessment of sensory or motor ability (e.g. hearing, gait speed) can forecast age-related cognitive decline
and risk for dementia. However, the brain mechanisms underlying cognitive, sensory, and motor covariation are largely unknown.
Here, we examined whether such covariation in midlife reflects variability in common versus distinct neocortical networks using
individualized maps of functional topography derived from BOLD fMRI data collected in 769 45-year-old members of a population-
representative cohort. Analyses revealed that variability in basic motor but not hearing ability reflected individual differences in the
functional topography of neocortical networks typically supporting cognitive ability. These patterns suggest that covariation in motor
and cognitive abilities in midlife reflects convergence of function in higher-order neocortical networks and that gait speed may not be
simply a measure of physical function but rather an integrative index of nervous system health.
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Introduction
Higher-order cognitive and lower-order sensorimotor abilities
have been generally regarded as distinct and studied separately.
However, there is growing evidence that they not only covary but
also that this covariation increases across the lifespan. For exam-
ple, there is evidence for covariation between sensorimotor and
cognitive abilities during childhood (Welch and Dawes 2007; van
der Fels et al. 2015), midlife (Rasmussen et al. 2019), and old age
(van der Willik et al. 2021). In addition, this covariation tends to
become more pronounced during aging (Baltes and Lindenberger
1997). Moreover, measures of sensory and motor abilities such as
hearing tests and gait assessments are commonly used to predict
cognitive decline and dementia risk in older adults (Studenski
et al. 2011; Collyer et al. 2022; Kwok et al. 2022). Identifying
brain mechanisms linking these seemingly disparate abilities can

further our understanding of not only the extent to which vari-
ability in fundamental aspects of human behavior reflect distinct
and common features of brain function across the lifespan but
also how they may be best leveraged in clinical applications.

Gait speed is a simple and widely used measure of biological
aging measured by how quickly a person walks across a
biosensor-equipped pad (Fritz and Lusardi 2009). As early as
midlife, individual differences in gait speed covary with complex
psychological processes including memory, executive functions,
and cognitive ability (Rasmussen et al. 2019; Sunderaraman et al.
2019). Individuals suffering from mild cognitive impairment also
show reduced gait stability compared with cognitively normal
people (Montero-Odasso et al. 2012). However, the extent to which
these processes are associated with common brain systems is
unclear. There is evidence in older adults that gait speed is
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associated with the strength of functional connectivity in higher-
order brain networks supporting cognitive abilities (Yuan et al.
2015; Lo et al. 2017; Droby et al. 2022). These same higher-order
networks are thought to be especially sensitive to age (Fjell et al.
2015; Staffaroni et al. 2018; Varangis et al. 2019), bolstering the
hypothesis that some effects of physical and cognitive aging
reflect shared features of common brain systems.

Likewise, hearing ability as measured by pure tone audiome-
try is associated with cognitive ability during midlife and aging
(Lindenberger and Baltes 1994; Baltes and Lindenberger 1997;
Loughrey et al. 2018; Okely et al. 2021) and is predictive of future
cognitive decline (Lin et al. 2011). However, there is some added
complexity in assessing potential links between hearing and cog-
nitive ability.

For example, pure tone audiometry is not a consistent indicator
of functional hearing ability and some individuals who have no
peripheral damage to the ear (i.e. peripheral hearing loss) may
still report reduced hearing ability (Sardone et al. 2019), which
could be more indicative of underlying brain health. Conversely,
peripheral synaptic pathologies have been associated with nor-
mal pure tone thresholds (Kohrman et al. 2020). For this reason,
hearing researchers often measure declining ability to differenti-
ate speech in noisy environments, which is thought to be more
affected by brain processing and is also associated with cognitive
decline (Humes et al. 2013; Sardone et al. 2019; Humes 2020;
Stevenson et al. 2022).

This ability to recognize speech in the presence of background
or competing noise is measured as a speech reception thresh-
old in noise (henceforth “SRT-hearing”). Crucially, measured SRT-
hearing may show greater ecological validity than pure tone
audiometry, as it captures the ability to hear and discern com-
plex auditory information (Stevenson et al. 2022). As with gait
speed, prior studies have associated SRT-hearing with functional
connectivity in higher-order brain networks most associated with
complex cognitive ability (Fitzhugh et al. 2021). These prior find-
ings with gait speed and SRT-hearing suggest that physical and
cognitive aging are reflected in shared features of common brain
networks. However, they are limited by small sample sizes and
only focus on a small number of networks. Thus, it remains
unclear why basic sensorimotor functioning is so closely linked
with cognition functioning especially in midlife and continuing
into later life.

Intrinsic functional connectivity is a powerful tool to describe
individual differences in network-level brain organization and
their relationship to behavior (Shen et al. 2017; Chen et al. 2022).
Traditional studies of functional connectivity use group-averaged
atlases to assign anatomical brain regions to different functional
networks. However, this assumes that the spatial layout of func-
tional networks is identical from person to person. Recent techni-
cal advances have demonstrated that there is substantial varia-
tion between people in the spatial layout of functional neocortical
networks (Laumann et al. 2015; Wang et al. 2015). This spatial
variation is called functional topography. Traditional studies using
functional connectivity ignore variation in functional topography,
and this likely increases error in the calculation of functional
connectivity. Importantly, emerging studies have demonstrated
that functional topography reliably maps onto individual differ-
ences in behavior as well as onto developmental changes in early
life (Kong et al. 2019; Cui et al. 2020, 2022; Keller et al. 2022).
Thus, functional topography represents a novel measure that can
reduce individual-level error in the estimation of neocortical net-
work architecture and, subsequently, further capture covariation
between brain and behavior.

Here, we leveraged measures of functional topography in a
large population-representative birth cohort, the Dunedin Study,
to examine the extent to which overlap in cognitive, motor, and
sensory abilities reflect shared variability in neocortical network
architecture. Specifically, we used Multi-Session Hierarchical
Bayesian Modeling (Kong et al. 2019; MS-HBM) to generate reliable
individualized estimates of functional topography at age 45. We
then mapped functional topography onto variation in cognitive
ability as measured by IQ, motor ability as measured by gait speed,
and sensory ability as measured by SRT-hearing. Next, we tested
our ability to predict variation in these three behaviors in Study
members by training models on features of functional topography.
Based on prior work, we hypothesized that IQ, gait speed, and
SRT-hearing would be correlated within each Study member. We
further hypothesized that higher IQ, faster gait speed, and better
SRT-hearing would all be associated with relatively larger higher-
order functional neocortical networks. Lastly, we hypothesized
that variability in IQ, gait speed, and SRT-hearing would be
predicted by overlapping patterns of individual differences in
the functional topography of these networks.

Materials and methods
Study design and participants
Participants were members of the Dunedin Study, a population-
representative birth cohort (n = 1,037; 91% of eligible births; 52%
male) born between April 1972 and March 1973 in Dunedin, New
Zealand (NZ), and eligible based on residence in the province and
participation in the first assessment at age 3 years (Poulton et al.
2015, 2022). The cohort represented the full range of socioeco-
nomic status in the general population of NZ’s South Island and,
as adults, matches the NZ National Health and Nutrition Survey
on key adult health indicators (e.g. body mass index, smoking,
physical activity, physician visits) and the NZ Census of citizens
the same age on educational attainment. The cohort is primarily
White (93%). Assessments were carried out at birth and ages 3, 5,
7, 9, 11, 13, 15, 18, 21, 26, 32, 38, and most recently (completed April
2019) 45 years when 875 Study members completed neuroimag-
ing. The NZ Health and Disability Ethics Committee approved the
Study, and all Study members provided written informed consent.
The concept and main analyses for this project were preregistered
(link: rb.gy/34xv8a). All analyses were checked for reproducibility
by an independent data analyst who used the manuscript, code,
and an independent copy of the data to check all analyses.

MRI acquisition
Study members were scanned using a MAGNETOM Skyra 3 T
scanner (Siemens Healthcare GmbH) equipped with a 64-channel
head/neck coil at the Pacific Radiology imaging center in Dunedin,
New Zealand. High-resolution T1-weighted images were obtained
using an MP-RAGE sequence with the following parameters:
TR = 2,400 ms; TE = 1.98 ms; 208 sagittal slices; flip angle, 9◦; FOV,
224 mm; matrix =256 × 256; slice thickness = 0.9 mm with no gap
(voxel size 0.9 × 0.875 × 0.875 mm3); and total scan time = 6 min
and 52 s. Functional MRI (fMRI) data were collected using 72
interleaved axial T2-weighted functional slices with 3-fold multi-
band accelerated echo planar imaging (TR = 2,000 ms; TE = 27 ms;
flip angle = 90 degrees; field of view = 200 mm; voxel size = 2 mm
isotropic; slice thickness = 2 mm without gap). Resting-state and
task fMRI data were collected as follows: (i) resting-state with eyes
open and a gray screen displayed (8:16 min; 248 TRs), (ii) emotional
face processing task (6:40 min, 200 TRs), (iii) color Stroop task
(6:58 min, 209 TRs), (iv) monetary incentive delay task (7:44 min,
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232 TRs), and (v) episodic memory task (5:44 min, 172 TRs). Details
for each of the four tasks can be found in the Supplemental
Materials. Twenty Study members completed the entire scanning
protocol a second time (mean days between scans = 79 days)
allowing for calculation of test–retest reliability of all our MRI-
derived measures.

fMRI preprocessing
Resting-state and task fMRI data were concatenated into one
time series to derive estimates of General Functional Connectivity
(GFC), which we have shown enhances test–retest reliability and
improves prediction of behavior in the Dunedin Study and other
datasets (Elliott et al. 2019). The use of GFC was further moti-
vated by strong convergent evidence that functional networks are
largely invariant to task conditions and task-derived functional
networks are similar to those derived from resting-state data (Fair
et al. 2007; Gratton et al. 2018). Further analyses validating GFC
in this dataset and others have been previously described (Elliott
et al. 2019). Briefly, data were analyzed using the Human Connec-
tome Project minimal preprocessing pipeline (Glasser et al. 2013).
T1-weighted anatomical images were skull-stripped, intensity-
normalized, and nonlinearly warped into a study-specific average
template in MNI space (Avants et al. 2008; Klein et al. 2009).
Functional time-series data were de-spiked, slice-time-corrected,
and realigned to the first volume in the time-series using AFNI
(Cox 1996). To limit distortion caused by in-scanner head motion,
motion regressors were generated using 6 motion parameters
and their first derivatives (to account for nonlinear effects) for
a total of 12 motion regressors. Five components from white
matter and cerebrospinal fluid were extracted (Behzadi et al.
2007) and used as nuisance regressors along with the mean
global signal. Images were bandpass filtered to retain frequencies
between 0.008 and 0.1 Hz. To reduce the influence of motion-
related artifacts, we excluded all high-motion Study members
and adhered to strict scrubbing of motion-infected timepoints.
We investigated a range of framewise-displacement cutoffs using
QC-RSFC plots to determine the optimal threshold for remov-
ing motion artifacts as recommended by Power et al. 2014. We
selected 0.35 mm framewise-displacement and 1.55 standardized
DVARS as exclusion thresholds. Nuisance regression, bandpass
filtering, censoring, and global-signal regression were performed
using AFNI’s 3dTproject. For task data, functional connectivity
due to signal evoked by task structure was removed using a Finite
Impulse Response model (Fair et al. 2007). Finally, time series data
were then projected to a two-dimensional fs_LR32k neocortical
surface space made up of ∼ 30,000 points or “vertices” that can
be convoluted to improve anatomical correspondence between
people (Van Essen et al. 2012).

Of the 875 Study Members who underwent MRI scanning, 769
were included in the current analyses after quality control proce-
dures. In sum, 62 Study Members were excluded for excess head
motion, 14 were excluded based on visual inspection of irregulari-
ties in a 360 ROI × 360 ROI functional connectivity matrix, 10 were
missing one or more functional scans (i.e. rest and four tasks),
8 were excluded due to missing 3D-FLAIR sequences, 7 were
excluded as MRI data were acquired with a 20-channel head coil
instead of the 64-channel head coil to accommodate larger head
circumferences, 4 were excluded due to incidental neurological
findings, and 1 was excluded due to a missing fieldmap.

Multi-session hierarchical Bayesian modeling
We implemented MS-HBM per the strategy of Cui et al. (2020),
who applied this method in a dataset with a similar amount of

fMRI data to the Dunedin Study. Broadly, MS-HBM defines several
parameters that are modeled in a variational Bayes expecta-
tion maximization algorithm to estimate network labels across
the neocortical surface. Parameters required for this method are
inter-region variability, inter-subject variability, and intra-subject
variability as well as two tuning parameters that control the
importance of the group average parcellation and smoothness.

To estimate inter-regional variability, MS-HBM first generates
binarized connectivity profiles for 1,483 equally spaced vertices
across the neocortical surface. Binarized profiles were defined
here as the 10% of vertices across the neocortical surface with the
strongest functional connectivity to each of these 1,483 vertices.
A group average network parcellation was then derived using the
average binarized connectivity profiles of all Study members. To
estimate intra-subject variability with only one scan per Study
member, time series data were split into two halves of 17:41 min
each, as recommended by Kong et al. (2019). Next, to estimate
inter-subject variability, we used a resampling method as we did
not have a validation dataset and computing across all Study
members was highly computationally expensive. We randomly
resampled 50 sets of 200 Study members from the total datasets
available. We calculated inter-subject variability across each of
these 50 sets and averaged these estimates. Finally, we selected
the following tuning parameters that were optimized using data
from the Human Connectome Project (Kong et al. 2019) due to
similarities in our preprocessing procedures: smoothness prior:
c = 40; group spatial prior: α = 200. The smoothness prior (c)
controls the penalty assigned for assigning two adjacent vertices
to different networks. The group spatial prior (α) controls the
weight of the group spatial prior. In other words, a parcellation
estimated with a high group spatial prior will be more similar to
the group average.

Given the above parameter estimates, MS-HBM generates an
individual-specific parcellation from each Study member’s GFC
time series data using a variational Bayes expectation maximiza-
tion algorithm (Kong et al. 2019). We chose to examine brain
function using the Yeo 17-network parcellation, which represents
an optimal solution to capturing the structure of correlations
between neocortical regions and allows for ready comparison
with existing literature (Yeo et al. 2011). Specifically, these 17
networks were derived by applying a clustering algorithm to
functional connectivity strength between evenly distributed ver-
tices across the cortex (Yeo et al. 2011). To evaluate how “well”
the resulting individualized parcellations captured variation in
BOLD signal, we calculated functional homogeneities for all indi-
vidualized parcellations and compared them to homogeneities
from template network parcellation (Yeo et al. 2011). Specifi-
cally, functional homogeneity is the average BOLD timeseries
correlation between all pairs of vertices assigned to the same
network. Therefore, higher homogeneity means that, on aver-
age, vertices within the same network are more functionally
connected.

To estimate test–retest reliability, we generated parcellations
using data from each of two separate scanning sessions in a
subset of 20 Study members who were scanned twice. We first
estimated test–retest reliability of individual network surface
areas using a two-way mixed-effects intraclass correlation coef-
ficient (ICC) with session modeled as a fixed effect and subject
as a random effect (Shrout and Fleiss 1979). We also calculated
test re-test reliability of whole brain topographic organization by
computing the Dice coefficient between timepoints as well as all
pairs of unique Study members. The Dice coefficient is a metric
to determine the overlap between two sets of categorical features
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(Destrieux et al. 2010; Birn et al. 2013; Kong et al. 2019, 2021). The
Dice coefficient can be calculated using the following formula:

Dice
(
parcellation A, parcellation B

) = 2 × (
#of vertices that overlap between parcellations A and B

)

(
total number of vertices in parcellation A + total number of vertices in parcellation B

)

The Dice coefficient is equal to 1 if there is complete overlap
between two parcellations and equal to 0 if there is no overlap
between parcellations.

Cognitive function
Full-scale IQ was assessed at age 45 using the Wechsler Adult
Intelligence Scale-IV (WAIS-IV; Wechsler 2008). Full-scale IQ was
used in our primary analyses. Full-scale IQ summarizes different
cognitive processes including attention, working memory, visu-
ospatial reasoning, and processing speed that may be differen-
tially associated with specific functional brain networks. Thus, we
tested if individual indices of the WAIS-IV were associated with
distinct profiles of network topography. We present separate anal-
yses using each of these indices in the Supplemental Materials.

Gait speed
The gait speed of Study members was assessed using the GAITRite
Electronic Walkway with 2 m acceleration and deceleration before
and after the walkway. Gait speed was assessed under three
conditions: usual gait speed (walking at a normal pace from a
standstill), maximum gait speed (walk as fast as safely as possi-
ble), and dual-task gait speed (walk at a normal pace while reciting
alternate letters of the alphabet out loud). Study members com-
pleted each gait condition twice and the mean speed was taken
for each condition. Gait speed was highly correlated across all
three conditions (Supplemental Materials). For our main analysis,
we used the average of the usual gait speed and maximum gait
speed conditions to remove any cognitive effects present in the
dual-task condition. We also completed all gait-speed analyses
using the mean of all three conditions to compare with previously
published results from this cohort (Rasmussen et al. 2019). These
results can be found in the Supplemental Materials.

To test the specificity of gait speed, we also conducted post
hoc, exploratory analyses using a measure of balance as reflected
by the maximum time Study members could stand on one leg
with their eyes closed up to 30 s. A Study member’s balance score
was the maximum time across three trials. Further details can be
found in the Supplemental Materials.

Listening task
Study members completed the Listening in Spatialized Noise—
Sentences test (LiSN-S) in a soundproof booth. Stimuli were pre-
sented using Sennheiser 215 headphones attached to a Mini
PCM2704 external sound card. The LiSN-S generates a three-
dimensional auditory environment in four different conditions.
During the task, target sentences are superimposed with dis-
tractor sentences. The distractor sentences were presented at 55
decibels sound pressure level (dB SPL). Study members repeated
target sentences out loud and were automatically scored accord-
ing to the number of correct words in each sentence. The program
began with target sentences presented at 62 dB SPL and intensity
levels were adjusted according to performance: the intensity was
adjusted down if > 50% of the words in a sentence were correct
and adjusted up if < 50% of the words were correct. The first
several sentence presentations were considered practice, with
each presentation lowered in 4-dB increments until performance

dropped below 50% accuracy, after which increments decreased
to 2 dB. Practice sessions were not included in the final scores.

The test condition continued until the average of the positive
and negative-going reversals was ≥3 and the standard error of
these midpoints was < 1 dB. If Study members did not reach
this point, the test condition simply ended after 30 sentence
presentations. Speech reception thresholds (SRT) were considered
the lowest intensity at which a Study member could repeat 50% of
words correctly. We used the low cue speech reception threshold,
where the distractor speaker and target speaker had the same
identity and were presented in the same location in the auditory
environment, in our primary analyses. We selected low cue speech
reception threshold as it is the most challenging condition and
may have greater age-related variation. Crucially, lower scores on
this measure indicate better hearing, as it reflects the intensity at
which a person can successfully distinguish between distractor
and target sentences. Further, we tested the other speech recep-
tion threshold from the LiSN-S task and measures of pure tone
audiometry (see Supplemental Materials). We also tested results
from an adaptation of the Digit Triplets Test (King 2011; Van den
Borre et al. 2021), a speech-in-noise task that uses white noise as
a distractor instead of other speech (See Supplemental Materi-
als). Results for these additional hearing measures can be found
in the Supplemental Results and Supplemental Fig. S1. We also
repeated all analyses while controlling for overall hearing ability
as measured by pure tone audiometry (Supplemental Results,
Supplemental Fig. S2).

Primary analyses
We associated IQ, gait speed, and SRT-hearing with two broad
features of functional topography: (i) total network surface area
and (ii) spatial similarity. These are described in more detail below.

Total network surface area
Total network surface areas were calculated for all 17 functional
networks by summing the number of vertices assigned to a given
functional network in each Study member. As functional topogra-
phy maps were generated after normalizing all Study members to
fs_LR32k space, measures of network surface area already control
for total neocortical surface area. We conducted 17 univariate
regressions between each functional network and each behavioral
measure (IQ, gait speed, and SRT-hearing) while controlling for sex
and in-scanner head motion (average framewise displacement).
We used a Bonferroni-corrected P-value of 0.05/17 = 0.0029 to
determine statistical significance.

To more stringently test associations observed with total net-
work surface areas, we also trained linear ridge regression models
using network surface areas and tested their ability to predict
IQ, gait speed, and SRT-hearing in unseen data using a split-
half scheme. Specifically, we used a 2-fold nested cross-validation
scheme to train our model (Cui et al. 2020). The outer fold was
used to estimate the generalizability of the model and the inner
fold was used to optimize the penalty parameters. For each behav-
ioral measure (IQ, gait speed, and SRT-hearing) we generated a
rank ordering of Study members and placed odd-ranking Study
members into the training set and even-ranking Study members
into the test set (i.e. unseen data). This train/test set split was the
outer fold. This approach to data splitting ensured that training
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and test sets would be closely matched on the behavioral outcome
of interest.

We included an L2 regularization term to prevent model
overfitting. This term was optimized during inner-loop cross-
validation. Specifically, we again split the training set in half
(training subset 1 and training subset 2). We then trained our ridge
regression model using subset 1 to predict behavior in subset 2
using a variety of L2 regularization terms. We then repeated this
procedure using subset 2 to predict subset 1. We calculated the
accuracy of each prediction (Pearson’s r) and the mean absolute
error (MAE) for each individual prediction. For each L2 term, we
averaged the r and reciprocal of the MAE terms and summed
these values to get an “accuracy” measure for each L2 term. The
L2 term with the highest overall accuracy was carried forward
to the outer fold step. Effects of sex and in-scanner head motion
were regressed from our behavioral measures prior to model
training. To prevent information leak, we regressed average in-
scanner head motion and sex from the training set and applied
the resulting beta weights to the test set. This approach ensured
that our model only used information from the training set,
including covariate regression, when calculating predictions in
the test set.

We employed a permutation method to test our predictions
for statistical significance. Specifically, we shuffled the behavioral
scores within the training set 1,000 times and recomputed the
prediction strength each time. We considered observed predic-
tions statistically significant if they had prediction accuracy above
the 95th percentile of null predictions and prediction error below
the 5th percentile of null predictions. Finally, to ensure predic-
tion accuracies were not due to our data splitting procedure, we
generated 100 random outer fold splits and generated predictions
for each of these random splits to compare with our estimates
derived from rank-order splitting.

We utilized the Haufe transform to assess for relative feature
importance in our multivariate prediction model (Haufe et al.
2014). Because multivariate regression models involve transform-
ing predictor variables from a high-dimensional feature space into
a lower-dimensional feature space, the multivariate beta weights
cannot be interpreted as relative feature importance. Instead, we
calculated the covariance between each predictive feature and
outcome variables. These covariances can be thought of as “rel-
ative feature importance” and can allow for interpretation of our
predictive model. Prior to Haufe transformation, we standardized
total surface area measures and regressed the effects of sex and
in-scanner head motion from each of our behavioral variables. We
then calculated covariance between each network’s standardized
surface area and each predicted behavioral score. To maintain
a consistent scale across behavioral measures, we divided each
covariance measure by the variance of respective behavioral mea-
sures. To ensure that our feature importance estimates were not
driven by idiosyncrasies in the data splitting procedure, we com-
puted feature importance estimates across the aforementioned
100 random outer fold data splits. We report the average feature
importance across these 100 predictions. Notably, we performed
this analysis only using Study members in the training set to
better interpret our trained regression model.

Spatial similarity
To test behavioral associations with the spatial layout of networks,
we again used a split-half approach to train kernel ridge regres-
sion models using brain wide topographic similarity and tested its
ability to predict behavior in held-out data. These models predict
behavior of a held-out Study member as the weighted average of

associations observed in Study members from the training set.
The weights were determined by that held-out Study member’s
brain-wide topographic similarity to each of the training Study
members, as quantified by the Dice coefficient (Kong et al. 2019;
Chen et al. 2022). We used the Dice coefficient between Study
members to estimate which Study members should show the
most similarity in behavior. In other words, if two Study members
have similar brain-wide functional topography, our models would
predict that they have similar behavior. Additional details of this
model can be found in the Supplemental Materials. We used
the same 2-fold nested cross-validation approach as above to
train and test the regression models using spatial similarity. We
again used similar permutation methods to test our predictions
for statistical significance and for robustness to data splitting
procedures.

Secondary analyses—regional prediction
To assess for specific regional contributions to prediction accu-
racies, we assessed the accuracy of our kernel ridge regression
models while training them using only topographic similarity
from within 360 neocortical parcels (Glasser et al. 2016). By using
a parcellation that is not based on our functional connectivity
maps, we are able to extract regional patterns of functional
topography across the cortex. Due to the misalignment of these
parcellations, each of the 360 parcels contain individual-level
variation in functional network boundaries. Thus, regional pre-
dictions of behavior are based only on the topography within a
specific region of the cortex. This procedure allowed us to test for
qualitative similarity of the neocortical regions most important
for the predictions of IQ, gait speed, and SRT-hearing.

To formally test for correspondence between maps of parcel-
wise prediction accuracies, we used a spatial permutation proce-
dure known as a spin test (Váša et al. 2018). A spin test allows
for tests of statistical significance by generating 10,000 random
permutations of neocortical surface data while preserving the
spatial covariance structure of the data. A truly random shuffling
of neocortical data would create an unrealistically weak null
distribution by generating biologically improbable distributions
across the cortex (Alexander-Bloch et al. 2018). Thus, a spin test is
a more conservative test of spatial correspondence. Correlations
between two brain maps were considered statistically significant
if they were higher than the 95th percentile of the set of null
distributions generated through the spin test.

Results
Cohort characteristics
Attrition analyses revealed no significant differences in either
childhood IQ or socioeconomic status between the full cohort,
those still alive, those seen at age 45, or those scanned at age 45
(Supplemental Materials, Supplemental Figs. S3–S4). Of the 875
Study members completing the neuroimaging protocol at age 45,
769 had GFC data passing quality control that were included in
the primary analyses. Study members with usable GFC data did
not significantly differ from the full age 45 sample in IQ at age
45 (t = 1.44, P = 0.15) or sex distribution (X2 = 0.21, P = 0.88). Thus,
the current analyses continue to reflect effects in a population-
representative cohort.

IQ, gait speed, and SRT-hearing were all normally distributed
in the subsample of 769 Study members with high-quality GFC
data (Supplemental Fig. S5A). IQ, gait speed, and SRT-hearing were
all significantly correlated (IQ and gait: r = 0.38, P < 0.001; IQ and
SRT-hearing: r = −0.31, P < 0.001; gait and SRT-hearing: r = −0.20,
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Fig. 1. Example of functional topography in the Dunedin Study cohort. (A) Group average functional parcellation. Legend shows colors corresponding to
each of 17 neocortical networks. (B) Example of functional topography variation in three Study members. Left hemisphere is shown to portray overall
group correspondence, whereas a region of the temporo-parietal junction is highlighted to show individual variation in topography.

P < 0.001; Supplemental Fig. S5B). This is consistent with previ-
ously reported associations between these variables in the full
Dunedin Study cohort at age 45 (Rasmussen et al. 2019).

Functional topography homogeneity and
test–retest reliability
Consistent with previous work (Kong et al. 2019, 2021; Cui
et al. 2020), we found that individualized parcellations showed
reliable differences between Study members and boosted average
functional homogeneity (i.e. the average correlation in BOLD
signal between all pairs of vertices within each network)
compared with the template parcellation. Each individual Study
member showed higher homogeneity from their individualized
parcellation compared with the template parcellation (Fig. 1,
Supplementary Fig. S6).

High quality GFC data were available from 19 of the 20 Study
members who repeated the scanning protocol. We found that
total network surface areas showed fair test–retest reliability
(mean network ICC = 0.47). We further observed strong within-
person similarity between timepoints (Dice coefficient = 0.81),
which was greater than between-person similarity (Dice coeffi-
cient = 0.72; Supplemental Fig. S7). These results are consistent
with previous test–retest analyses of functional topography in
other datasets (Kong et al. 2019, 2021; Cui et al. 2020). Thus,
our maps capture reliable individual-level features of functional
topography.

Total network surface area
We first tested associations between total network surface area
for each of the 17 functional networks and IQ, gait speed, and

SRT-hearing (Fig. 2A). IQ and gait speed but not SRT-hearing exhib-
ited a broadly similar pattern of associations with network surface
area. Notably, higher IQ and faster gait speed were associated with
relatively larger default mode network 1, but relatively smaller
default mode network 2 or 3 and limbic networks. No statistically
significant associations with SRT-hearing were observed. A com-
plete list of results is presented in Supplemental Table S1. Post
hoc analyses revealed that balance showed a similar profile of
univariate associations to gait speed. All index scores of the WAIS-
IV showed similar profiles of univariate associations to full-scale
IQ (see Supplemental Materials, Supplemental Figs. S8A and S9A).
Thus, the associations observed between functional topography
and IQ more closely reflect-full-scale IQ and not any one domain
of cognition.

To gauge the similarity between profiles of associations, we
computed correlations between resulting beta weights with IQ,
gait speed, and SRT-hearing. Although the pattern of associ-
ations appeared highly consistent between IQ and gait speed
(r = 0.76, P <0 .001), there was no such consistency between IQ and
SRT-hearing (r = −0.31, P = 0.22), or between gait speed and SRT-
hearing (r =−0.40, P = 0.11).

In complementary analyses, ridge regression models trained
using total network surface areas (henceforth: surface area pre-
diction models) were able to predict variation in IQ (fold 1: r = 0.19,
P < 0.001; fold 2: r = 0.11, P = 0.03) and gait speed (fold 1: r = 0.19,
P < 0.001, fold 2: r = 0.12, P = 0.02), but not SRT-hearing (fold 1:
r = 0.06, P = 0.22, fold 2: r = 0.08, P = 0.10; Fig. 2B). Our permutation
procedure revealed that our predictions were significantly higher
than would be expected by chance for IQ (fold 1: pperm = 0.003,
fold 2: pperm = 0.03) and gait speed (fold 1: pperm = 0.001, fold 2:
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Fig. 2. Network surface area analyses. (A) Results from univariate correlations between network surface area and IQ, gait, and SRT-hearing. Colors
correspond to functional networks identified in Fig. 1(A). Correlations marked with a star are statistically significant after Bonferroni correction across
the 17 comparisons. (B) Results from surface area prediction models for IQ, gait speed, and SRT-hearing. Scatterplots represent the correlation between
observed scores and predicted scores according to ridge regression models. Fold 1 is shown in gray, whereas fold 2 is shown in black. (C) Permutation tests
of observed predictions compared with 1,000 null predictions. (Top panel) Histograms show null distribution of prediction strengths and vertical lines
show the observed prediction strengths. (Bottom panel) Histograms show the null distribution of prediction error and vertical lines show the observed
prediction error. Fold 1 is shown in gray vertical lines, whereas fold 2 is shown in black.

pperm = 0.03), but not for SRT-hearing (fold 1: pperm = 0.15, fold 2:
pperm = 0.08). The predictions for IQ also had less error than would
be expected by chance (fold 1: pperm = 0.002, fold 2: pperm = 0.03).
Predictions for gait speed (fold 1: pperm = 0.004, fold 2: pperm = 0.08)

and SRT-hearing also had relatively low error (fold 1: pperm = 0.06,
fold 2: pperm = 0.01) (Fig. 2C). These predictions were robust to vari-
ation in data-splitting procedures (Supplemental Fig. S11). Sec-
ondary analyses found that surface area prediction models were
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able to modestly predict balance as well as most WAIS-IV index
scores (Supplemental Materials, Supplemental Figs. S8B and S9B).

Lastly, Haufe-transformed predictive feature scores derived
for each functional network were broadly consistent between
IQ and gait speed (r = 0.74, P = 0.001), but not between IQ and
SRT-hearing (r = −0.28, P = 0.26), or gait speed and SRT-hearing
(r =−0.37, P = 0.14). In addition, surface areas for default mode
network 1 had strong positive feature importance for both IQ
and gait, whereas limbic networks had strong negative feature
importance for both IQ and gait (Supplemental Fig. S12).

Spatial similarity
Next, we used a more fine-grained approach to testing the asso-
ciations between functional topography and behavior. Using total
network surface areas is a somewhat coarse way of testing asso-
ciations with functional topography, as it does not consider the
shape of functional networks. Furthermore, this coarse measure
of total network surface area had only fair test re-test reliability
in our dataset. Thus, the following analysis is based on the shape of
individualized functional networks—a more detailed and reliable
strategy of capturing functional topography. For this analysis, we
again used a split-half approach to train kernel ridge regression
models, this time using brain-wide topographic similarity as cal-
culated using the Dice coefficient (henceforth: spatial similarity
prediction models; Fig. 3A). We found that these spatial similarity
prediction models were able to predict IQ (fold 1: r = 0.34, P < 0.001,
fold 2: r = 0.23, P < 0.001) and gait speed (r = 0.19, P < 0.001, fold
2: r = 0.10, P = 0.04), but not SRT-hearing (fold 1: r = 0.03, P = 0.58,
fold 2: r = 0.05, P = 0.32) in held-out Study members (Fig. 3B).
Prediction was stronger than would be expected by chance for
IQ (fold 1: pperm < 0.001, fold 2: pperm < 0.001) and gait speed (fold
1: pperm < 0.001, fold 2: pperm < 0.03), but not SRT-hearing (fold 1:
pperm = 0.28, fold 2: pperm = 0.14). In addition, predictions for IQ
(fold 1: pperm < 0.001, fold 2: pperm < 0.001) had less error than
would be expected by chance. Gait speed had relatively low lev-
els of error (fold 1: pperm = 0.001, fold 2: pperm = 0.23), but SRT-
hearing prediction had error similar to the null distribution (fold 1:
pperm = 0.64, fold 2: pperm = 0.09) (Fig. 3C). Finally, these results were
robust to variation in data splitting (Supplemental Fig. S13). Sec-
ondary analyses found that spatial similarity prediction models
were also able to modestly predict balance as well as most WAIS-
IV index scores (Supplemental Materials, Supplemental Figs. S8B
and S9B). As has been observed previously (Kong et al. 2019; Cui
et al. 2020), predictions using similarity tended to have stronger
accuracy and less error compared with predictions using only
total surface area (Supplemental Fig. S14).

Regional prediction
To identify specific regional contributions to our observed pre-
dictions, we repeatedly assessed the accuracy of our spatial sim-
ilarity prediction models while training them using only func-
tional topography from within each of 360 anatomically derived
neocortical parcels (Fig. 4A). Specifically, we calculated the Dice
coefficient similarity between all pairs of participants for each
neocortical parcel. We then used each of these 360 similarity
matrices to train our spatial similarity prediction models. Each
resulting prediction strength thus indicated how well functional
topography from within that anatomical parcel alone could pre-
dict behavior. This procedure also allowed us to test for qual-
itative similarity of the neocortical regions most important for
the predictions of IQ, gait speed, and SRT-hearing. Broadly, the
strongest regional predictions for IQ and gait speed reflected
variability in the functional topography of the temporoparietal

junction and superior temporal gyrus, regions assigned to var-
ious default mode subnetworks in our group average, as well
as lateral frontal cortex. SRT-hearing was modestly predicted
from variability in lateral frontal and temporoparietal parcels
(Fig. 4B).

We also compared the prediction strength of each individ-
ual parcel with the prediction strength using global functional
topography (i.e. across the entire cortex). We observed that the
prediction of IQ based on global topography was stronger than
prediction from the topography of any single parcel, whereas
a small number of parcels predicted gait speed more strongly
than did global topography. There was no difference between
prediction strengths of regional or global topography for SRT-
hearing (Fig. 4C).

We used a spin test to formally evaluate correspondence
between regional prediction maps for IQ, gait speed, and SRT-
hearing. This test created 10,000 random permutations of values
in the 360 neocortical parcels while preserving their overall spatial
covariance structure, thus generating a more realistic and stricter
null distribution to test the observed association (Váša et al. 2018).
The spatial patterns of regional prediction for gait speed and
SRT-hearing both modestly aligned with IQ (IQ-gait speed fold
1: r = 0.12, pspin = 0.01; IQ-gait speed fold 2: r = 0.21, pspin < 0.001;
IQ-SRT-hearing fold 1: r = 0.17, pspin < 0.001; IQ-SRT-hearing fold
2: r = 0.14, pspin = 0.007). However, regional prediction patterns for
gait speed and SRT-hearing did not align with each other (gait
speed-SRT-hearing fold 1: r = 0.03, pspin = 0.30; gait speed-SRT-
hearing fold 2: r = 0.06, pspin = 0.09; Fig. 4D).

Discussion
We used a recently developed approach to reliably capture
individual differences in the organization of functional networks
across the neocortex (i.e. functional topography) in a large
population-representative birth cohort now in midlife. We then
leveraged this information to help better understand commonly
observed correlations between seemingly disparate abilities,
namely cognitive functioning as captured by IQ, and sensorimotor
functioning as captured by gait speed and SRT-hearing. First,
we found evidence for considerable variation in the topographic
organization of common functional neocortical networks across
this population-representative cohort, bolstering prior work with
samples of convenience (Kong et al. 2019; Cui et al. 2020; Keller
et al. 2022). Next, we found evidence for shared variation in the
functional topography associated with IQ and gait speed but not
SRT-hearing. Although IQ and gait speed would appear to be quite
different behaviors, they mapped onto highly similar aspects of
functional topography. This suggests that covariation between
cognitive and motor abilities during midlife is partially driven
by shared variation in the topography of functional networks
distributed across the neocortex.

More specifically, we found that higher IQ and faster gait
speed both mapped onto increased surface area of higher-order
functional neocortical networks typically associated with cog-
nitive functions and not lower-order somatomotor neocortical
networks typically associated with motor functions. This is in
line with prior findings that gait speed in older adults most
strongly correlates with the functional connectivity strength of
higher-order functional networks (Yuan et al. 2015; Lo et al. 2017).
However, these prior studies utilized functional connectivity rather
than functional topography so we cannot directly compare our
results to these prior studies. In our analyses, variation in IQ
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Fig. 3. Whole brain spatial similarity analyses. (A) Schematic depicting the organization of our ridge regression model. Brain-wide similarity (Dice
coefficient) was calculated between all unique pairs of Study members and stored in a similarity matrix. This matrix was then used to train our ridge
regression model to predict IQ, gait speed, and SRT-hearing in unseen Study members. (B) Results of spatial similarity prediction models for IQ, gait speed,
and SRT-hearing. Scatterplots show the correlations between observed scores for IQ, gait speed, and SRT-hearing and the predicted scores according to
our ridge regression models. Fold 1 is shown in gray, whereas fold 2 is shown in black. (C) Permutation testing of spatial similarity prediction models. (top
panel) histograms show the null distribution of prediction strengths from 1,000 null predictions. Vertical lines represent observed prediction strengths.
(Bottom panel) Histograms show the null distribution of prediction error from 1,000 null predictions. Vertical lines represent observed prediction error.
Fold 1 is shown in gray, whereas fold 2 is shown in black.

and gait speed most strongly reflected the functional topography
of the default mode network. Thus, slower gait speed in midlife
appears to reflect changes in default mode network organization.
Notably, the default mode network is thought to be critical during

aging, cognitive decline, and dementia onset (Buckner et al. 2005).
Specifically weaker functional connectivity of the default mode
network has been associated with aging, cognitive decline, and
poorer health in adults (Sambataro et al. 2010; Smith et al. 2015;
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Fig. 4. Regional prediction analyses. (A) Schematic depicting our method for regional prediction. For each of the 360 Glasser parcels, we generated a
new similarity matrix based on topographic similarity between all unique pairs of Study members within only that Glasser parcel. We then tested the
ability for topography in that parcel alone to predict IQ, gait speed, and SRT-hearing. (B) Prediction strengths for 360 Glasser parcels for IQ, gait speed,
and SRT-hearing. Darker red indicates stronger prediction based on topography within that parcel. Parcels that had negative prediction values (i.e. no
predictive strength) have no color. (C) Comparison of regional predictions with whole brain predictions. Histograms show distribution of predictions
from each parcel and the vertical lines show prediction strength based on the whole brain. Fold 1 is shown in gray, whereas fold 2 is shown in black.
(D) Cross-parcel correlations in predictions of IQ, gait speed, and SRT-hearing (vertical lines), overlaid on null density plots generated with spin tests.
Fold 1 is shown in gray, whereas fold 2 is shown in black. The leftmost plot shows the correlation between parcel-wise prediction of IQ and gait speed,
the middle plot shows the correlation between parcel-wise prediction of IQ and SRT-hearing, and the rightmost plot shows the correlation between
parcel-wise prediction of gait speed and SRT-hearing.
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Staffaroni et al. 2018). The observed topographic patterns of asso-
ciations with IQ and gait speed may index poorer overall health
at midlife that may predispose people to accelerated biological
aging (Elliott et al. 2021), and could reflect the early signs of aging
itself. This would align with the “last in, first out” hypothesis of
brain aging (Douaud et al. 2014), which posits that the last brain
networks to develop during early life (i.e. default mode network)
are the first to degrade during later life. Given the relative youth
of our cohort compared with most aging studies (i.e. age 45 vs.
age 65+), the cross-sectional associations with the default mode
network could reflect early stages of accelerated aging that first
manifest in higher-order, later-developing networks. Additionally,
those with the most extreme age acceleration at age 45 may be
on a pathway to later frailty (Elliott et al. 2021). It is possible that
early signs of this geriatric syndrome could manifest in higher-
order functional network organization.

Notably, whereas we observed the strongest associations with
the functional topography of the default mode network, our pre-
diction models performed best when using information from all
17 neocortical networks. Thus, although the default mode net-
work may have greater relative importance, the shared variance
between IQ and gait speed reflects the functional organization of
the entire neocortex.

In contrast, we did not observe similar associations between
SRT-hearing and functional topography. This is somewhat sur-
prising given that SRT-hearing was correlated with cognitive abil-
ity at a similar magnitude as gait speed in our cohort, and all
three measures were similarly normally distributed. This null
finding was true for SRT-hearing as well as other hearing vari-
ables and was robust to variation in overall hearing ability (see
Supplemental Materials for additional analyses). It is important
to note that very few Study members demonstrated clinically
significant hearing loss at midlife. Age and peripheral hearing
loss significantly contribute to SRT-hearing (Besser et al. 2015)
and normal hearing has been shown to nullify the association
between SRT-hearing and cognitive ability (Glyde et al. 2013).
Although many studies have found associations between sensory
functioning and cognitive decline, these studies have typically
focused on participants older than 65 years, who would typically
have mild or greater hearing loss (Lindenberger and Baltes 1994;
Lin et al. 2011; Loughrey et al. 2018). A possible explanation for
the absence of associations between SRT-hearing and functional
topography is that sensory functioning is less closely tied to
the organization of neocortical networks in midlife compared
with cognitive and motor functioning. Indeed, when younger
(25–69 years) and older (70–103 years) adults are directly com-
pared, older adults show stronger associations between sensory
and cognitive ability compared with younger adults (Baltes and
Lindenberger 1997). Finally, prior research in the Dunedin Study
has found that biological aging in midlife is more weakly associ-
ated with sensory functioning compared with cognitive and motor
functioning (Elliott et al. 2021). Thus, if the profile of associations
between functional topography, IQ, and gait speed does reflect
midlife stages of biological aging, this profile may not yet reflect
variation in hearing ability.

In addition to these novel findings, our analyses extend prior
studies of functional topography in several ways. First, our indi-
vidualized maps of functional topography had good test–retest
reliability comparable with prior work (Kong et al. 2019, 2021),
including with parcellation methods other than MS-HBM (Cui
et al. 2020). Second, we found associations between functional
topography and cognitive ability that have effect sizes and predic-
tion performances that are similar to prior work in other datasets

(Kong et al. 2019; Cui et al. 2020; Keller et al. 2022). Third, we repli-
cated findings that measures of network spatial organization tend
to outperform summary metrics of total network surface areas
in predicting behavior (Kong et al. 2019). Taken together, these
findings provide further evidence for the utility of functional
topography as a novel technique for reliably capturing individual
differences in brain function and their mappings out to behavior.

Our study is not without limitations. First, neuroimaging,
gait speed assessment, and hearing measurements were only
conducted at one time point, precluding longitudinal analyses.
Although we have previously found that gait speed is associated
with longitudinal biological aging (Rasmussen et al. 2019), we are
not yet able to describe longitudinal changes in gait speed itself,
hearing ability, or functional topography. However, repeat testing
of neuroimaging, gait speed, IQ, and hearing in this cohort will
begin at age 52 in 2023. Second, the Dunedin Study cohort was
established 5 decades ago, bringing an inherent limit on sample
size. Thus, we faced power constraints typical of cross-sectional
analyses of brain-behavior associations (Gratton et al. 2022; Marek
et al. 2022). It is partially for this reason that we selected a
strategy (MS-HBM) designed to reduce individual error inherent in
traditional analyses of brain function. Although our replications
of prior brain-behavior findings from other large datasets
are reassuring (Kong et al. 2019), we must await additional
independent replications of our novel findings. Moreover, our
population-representative dataset may generalize more readily
than convenience samples that suffer from healthy volunteer
bias. In addition, our preregistration and reproducibility-check
strategies prevent p-hacking, which is known to contribute to
replication failures. Finally, SRT-hearing was associated with
working memory and attention. Although this makes the measure
a more ecologically valid assessment of hearing ability, it also
may draw more heavily on cognition. However, we still did
not observe any significant associations with topography and
measures of pure hearing ability (Supplemental Materials,
Supplemental Figs. S1–S2).

Taken together, our results present a profile of brain-wide func-
tional organization that correlates with both cognitive and motor
functioning during midlife. These convergent patterns across the
functional topography of IQ and gait speed provide a plausible bio-
logical basis for why gait speed captures individual differences in
midlife cognitive function (Rasmussen et al. 2019), overall health
(Smith et al. 2015), and, potentially, early signs of accelerated
aging and a pathway to later frailty. This suggests that gait speed
may not be simply a measure of physical function but rather an
integrative index of nervous system health.
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