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A B S T R A C T   

Biological aging is the correlated decline of multi-organ system integrity central to the etiology of many age- 
related diseases. A novel epigenetic measure of biological aging, DunedinPACE, is associated with cognitive 
dysfunction, incident dementia, and mortality. Here, we tested for associations between DunedinPACE and 
structural MRI phenotypes in three datasets spanning midlife to advanced age: the Dunedin Study (age=45 
years), the Framingham Heart Study Offspring Cohort (mean age=63 years), and the Alzheimer’s Disease 
Neuroimaging Initiative (mean age=75 years). We also tested four additional epigenetic measures of aging: the 
Horvath clock, the Hannum clock, PhenoAge, and GrimAge. Across all datasets (total N observations=3380; total 
N individuals=2322), faster DunedinPACE was associated with lower total brain volume, lower hippocampal 
volume, greater burden of white matter microlesions, and thinner cortex. Across all measures, DunedinPACE and 
GrimAge had the strongest and most consistent associations with brain phenotypes. Our findings suggest that 
single timepoint measures of multi-organ decline such as DunedinPACE could be useful for gauging nervous 
system health.   
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1. Introduction 

Aging is the primary risk factor for many prevalent diseases (Niccoli 
and Partridge, 2012). Indeed, geroscientists have begun to treat aging 
itself as a preventable cause of many aging-related diseases (Barzilai 
et al., 2018; Campisi et al., 2019; Matt et al., 2015). The geroscience 
hypothesis defines aging as the gradual, progressive, correlated biolog-
ical decline of the entire body over decades (Kennedy et al., 2014; 
Gladyshev, 2016). Crucially, individuals of the same chronological age 
often vary in their rate of biological aging (Belsky et al., 2015). Despite its 
importance, there is still no agreed-upon measure of biological aging 
(Ferrucci et al., 2020). To address this, researchers have begun to use 
DNA methylation to quantify aging. DNA methylation is a highly 
age-sensitive epigenetic process wherein methyl groups are selectively 
added to DNA molecules to affect gene transcription. Attempts to 
develop measures of aging have often used blood DNA methylation 
because blood is the most widely profiled source of DNA and blood DNA 
methylation is a biological substrate that is sensitive to age-related 
changes across the body (Horvath and Raj, 2018; Levine et al., 2015). 

In the past decade, several algorithms have been developed to esti-
mate biological aging using DNA methylation (Rutledge et al., 2022). 
These algorithms are typically referred to as ‘epigenetic clocks.’ The first 
generation of epigenetic clocks was trained largely on chronological age 
(Hannum et al., 2013; Horvath, 2013). Subsequently, a second genera-
tion of clocks was trained on cross-sectional measures of current health 
that predict mortality such as C-reactive protein levels, white blood cell 
count, and smoking packs-per-year (Levine et al., 2018; Lu et al., 2019). 
This second generation includes clocks such as PhenoAge and GrimAge. 
Tests for associations between first- and second-generation epigenetic 
clocks and brain structure have yielded mixed results. Some studies 
reported large positive associations between accelerated epigenetic age 
and reduced total brain volume (Hillary et al., 2021), reduced hippo-
campal volume (Davis et al., 2017), increased white matter hyper-
intensities (Hillary et al., 2021), and thinner cortex (Proskovec et al., 
2020). However, other studies found only small positive associations 
between accelerated epigenetic age and lower hippocampal volume 
(Milicic et al., 2022) and increased white matter hyperintensities (Raina 
et al., 2017). Still others reported null associations between accelerated 
epigenetic age and cortical thickness, cortical surface area, and cortical 
volume (Cheong et al., 2022), or even found that accelerated epigenetic 
age is associated with preserved white matter microstructure, specif-
ically increased fractional anisotropy and reduced mean diffusivity 
(Chouliaras et al., 2018). 

In contrast to these earlier epigenetic clocks, we recently developed a 
third-generation DNA methylation-based measure that is unique in 
estimating a person’s rate of biological aging. The DunedinPACE (Pace 
of Aging Calculated from the Epigenome) algorithm was developed by 
first measuring people’s rate of physiological change over time and then 
identifying the methylation patterns that optimally captured individual 
differences in their age-related decline (Belsky et al., 2022). Specifically, 
age-related decline was measured over ages 26, 32, 38, and 45 years in 
19 biomarkers of the cardiovascular, metabolic, renal, immune, dental, 
and pulmonary organ systems among healthy midlife individuals of the 
same chronological age participating in the Dunedin Study (Elliott et al., 
2021b). Methylation patterns at the end of the 20-year observation 
period were then identified that estimated how fast each participants’ 
multi-organ decline occurred during the 20 years leading up to the point 
of measurement (Belsky et al., 2022). Thus, DunedinPACE was designed 
to capture methylation patterns reflecting individual differences in the 
rate of age-related multi-organ decline and it has been robustly associ-
ated with multimorbidity and mortality (Belsky et al., 2022; Bernabeu 
et al., 2023; Faul et al., 2023; Kuiper et al., 2023; Lachlan et al., 2022; 
McMurran et al., 2023). Importantly, DunedinPACE allows for readily 
measuring the pace of aging in individuals who lack data to implement 
longitudinal physiological profiling. 

Of note, DunedinPACE was not trained on any measures of central 

nervous system decline. Thus, it is not clear whether DunedinPACE is 
associated with brain structure. Recent studies have used longitudinal 
multi-organ measurements to demonstrate that aging ‘below the neck’ is 
related to aging of the brain (Elliott et al., 2021a, 2021b; Tian et al., 
2023). Additionally, prior work has found some correspondence be-
tween DNA methylation patterns in blood and brain tissue (Horvath 
et al., 2012), suggesting that DNA methylation in blood is a promising 
surrogate for relating the aging of body and brain (but see (Shireby et al., 
2020). However, it is unknown whether a measurement from a blood 
sample at a single timepoint also captures the association between brain 
structure and body aging. DunedinPACE has been associated with 
cognitive and clinical measures that are thought to index health of the 
central nervous system. For instance, faster DunedinPACE has been 
associated with more rapid cognitive decline (Belsky et al., 2022; Reed 
et al., 2022), mild cognitive impairment, and dementia (Sugden et al., 
2022). These findings suggest that DunedinPACE indexes typical decline 
of cognitive ability during typical aging as well as in neurodegenerative 
illness. Associations between DunedinPACE and these key cognitive and 
clinical phenotypes suggest that DunedinPACE may also be associated 
with brain structure, though this question has not been formally tested. 

We examined associations between DunedinPACE and multiple 
measures of brain structure across three large datasets spanning mid- to 
late-life: the Dunedin Study (N = 770, mean age=45 years), the Fra-
mingham Heart Study Offspring Cohort (FHS-OC; N = 903, mean 
age=63.76 years), and the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI; N observations=1707, N individuals=649; mean age=75.41 
years). Across all three datasets (N observations=3380; N individu-
als=2322), we tested for associations between DunedinPACE and mea-
sures of brain structure derived from high-resolution magnetic 
resonance imaging (MRI; Fig. 1) including: total brain volume (TBV), 
hippocampal volume (HC), white matter hypointensity volume 
(WMHypo), mean cortical thickness (CT), and total cortical surface area 
(SA). When available in the Dunedin Study and ADNI, we also tested for 
associations between DunedinPACE and white matter hyperintensity 
volume (WMHyper). In addition, we leveraged the longitudinal nature 
of ADNI to test for associations between DunedinPACE and age-related 
changes in brain structure. For comparison, we also tested associations 
between first- and second-generation epigenetic clocks and brain 
structure. 

2. Methods 

Data used in the current analyses were collected in the Dunedin 
Study (Poulton et al., 2023), the FHS-OC (Feinleib et al., 1975), and 
ADNI (Petersen et al., 2010). Further details on each of these studies is 
provided below. All analyses were checked for reproducibility by an 
independent data analyst who used the manuscript to derive code and 
reproduce statistics in an independent copy of the data. 

2.1. Dunedin Study 

The Dunedin Study is a longitudinal study of a population- 
representative birth cohort (N = 1037) born between April 1972 and 
March 1973 in Dunedin, New Zealand (Poulton et al., 2023). The cohort 
is primarily White (93 %, self-identified), matching South Island de-
mographic characteristics. Assessments were carried out at birth and 
ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, 38, and most recently 45 years, 
when 94 % of living members took part. DNA methylation and MRI data 
reported here were collected at the age-45 assessment phase. The 
Dunedin Study was approved by the New Zealand Health and Disability 
Ethics Committee and the Duke University Institutional Review Board. 
All Study members provided written informed consent. 

2.1.1. DNA methylation 
DNA methylation was measured from whole blood using Illumina 

Infinium MethylationEPIC BeadChip Arrays and run at the Molecular 
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Genomics Shared Resource at the Duke Molecular Physiology Institute. 
Further details on DNA methylation methods in the Dunedin Study have 
been reported previously (Belsky et al., 2022; Sugden et al., 2020) and 
are presented in the supplemental materials. 

2.1.2. MRI 
T1-weighted and T2-weighted fluid attenuated inversion recovery 

(FLAIR) images were collected using a Magnetom Skyra 3 T scanner 
with a 64-channel head/neck coil (Siemens Healthcare GmbH). High- 
resolution structural images were obtained using a T1-weighted MP- 
RAGE sequence. TBV, HC, WMHypo, CT, and SA were generated from 
the T1-weighted images using The Human Connectome Project minimal 
preprocessing pipeline (Glasser et al., 2013) and WMHyper was derived 
from the T2-weighted images using the Unidentified Bright Object de-
tector (Jiang et al., 2018) with visual confirmation of accuracy provided 
by a trained neuroradiologist. Further details on MRI methods in the 
Dunedin Study have been reported previously (Arbeloff et al., 2019), 
and are presented in the supplemental materials. 

2.2. Framingham Heart Study – Offspring Cohort (FHS-OC) 

The FHS tracks the development of cardiovascular disease in three 
generations of families from Framingham, Massachusetts, beginning in 
1948 (Tsao and Vasan, 2015). We analyzed data collected from the 
second generation of participants, known as the Offspring Cohort 
(Feinleib et al., 1975). All DNA methylation data were collected at the 
Framingham Offspring 8th follow-up, and MRI data were collected 
during an independent schedule of assessments conducted approximate 
to the time of the 8th follow-up. We obtained FHS-OC data from the 
National Institutes of Health Database of Genotypes and Phenotypes 
(dbGaP) under accession phs000007.v33.p14. DNA methylation data 
are available as substudy phs000724.v10.p14. Brain imaging data are 
available as substudy phs002559.v1.p14. We analyzed DNA methyl-
ation data downloaded as phg000492.v5. FHS_DNAMethylation. 
raw-data-idat and brain imaging data downloaded as phs000007.v33. 
pht004364.v2.t_mrbrfs_2010_1_0900s. The FHS was approved by the 
Institutional Review Board for Human Research at Boston University 

Medical Center. All participants provided written informed consent. 

2.2.1. DNA methylation 
DNA methylation was measured from whole blood using Illumina 

Infinium HumanMethylation450 BeadChip Arrays and run at the Uni-
versity of Minnesota and The Johns Hopkins University (dbGaP 
phs000724.v9.p13). Further details of DNA methylation methods in the 
FHS-OC have been reported previously (Mendelson et al., 2017). 

2.2.2. MRI 
T1-weighted images were collected using a Magnetom 1.5 T scanner 

with T1-weighted coronal spoiled gradient-recalled echo acquisition 
sequence (Siemens Healthcare GmbH). TBV, HC, WMHypo, CT, and SA 
were generated using FreeSurfer version 5.3 (Fischl, 2012). T2-weighted 
FLAIR images were not available for the measurement of WMHyper. 
Further details on MRI methods in FHS-OC have been reported previ-
ously (McGrath et al., 2019; Van Lent et al., 2023). 

2.3. Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

The primary goal of ADNI is to test whether serial magnetic reso-
nance imaging, positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessments can be com-
bined to measure the progression of neurodegeneration in individuals 
with mild cognitive impairment, Alzheimer’s disease, and healthy older 
adults. DNA methylation data were downloaded from the ADNI data 
repository on June 3rd, 2020 and MRI data were downloaded on June 
12th, 2022 (adni.loni.usc.edu). ADNI was approved by the Institutional 
Review Boards of all the participating institutions. All participants 
provided written informed consent. 

2.3.1. DNA methylation 
DNA methylation was measured from whole blood using the Illumina 

Infinium MethylationEPIC BeadChip Array and run at AbbVie. Further 
details on DNA methylation methods in ADNI have been reported pre-
viously (Sugden et al., 2022; Vasanthakumar et al., 2020). 

Fig. 1. Diagrams of MRI-derived brain structure measures. Phenotype of interest is represented in blue. Top row shows total brain volume (TBV), hippocampal 
volume (HC), and white matter hypointensity volume (WMHypo). Bottom row shows mean cortical thickness (CT) and total cortical surface area (SA). 
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2.3.2. MRI 
T1-weighted and T2-weighted FLAIR images were collected using 

either 1.5 T or 3 T scanners. TBV, HC, WMHypo, CT, and SA were 
generated from the T1-weighted images using FreeSurfer version 4.3, 
5.1, or 6.0 (Fischl, 2012). WMHyper were generated from the 
T2-weighted images using a previously described algorithm (Decarli 
et al., 1999). MRI acquisition parameters varied across ADNI sites and 
waves; however, the targets for acquisition were isotropic 1 mm3 voxels. 
(Jack et al., 2008). All MRI data underwent centralized quality control 
by ADNI investigators prior to becoming available for download. ADNI 
WMHypo, CT, and SA data are distributed according to the FreeSurfer 
version used in processing; therefore, we used Longitudinal ComBat to 
harmonize across FreeSurver versions using all FreeSurfer observations 
with QC ratings of ‘Pass’ from individuals with DNA methylation data 
(Beer et al., 2020). Further details on MRI methods in ADNI can be found 
at adni.loni.usc.edu. 

2.3.3. Cognitive status 
ADNI participants were classified into cognitively normal (CN), mild 

cognitive impairment (MCI), or dementia groups by ADNI study physi-
cians based on subjective memory complaints, multiple neurocognitive 
and behavioral assessment scores, and level of impairment in activities 
of daily living. Complete diagnostic criteria used by ADNI can be found 
at https://adni.loni.usc.edu/methods/documents/. 

2.4. DunedinPACE estimation 

In all three datasets, we derived DunedinPACE from the DNA 
methylation data using a publicly available algorithm (https://github. 
com/danbelsky/DunedinPACE). Briefly, this algorithm was derived 
from elastic net regression to estimate the pace of biological aging from 
a set of 173 CpG sites (Belsky et al., 2022). We applied these regression 
weights to the methylation scores at these CpG sites to calculate the 
DunedinPACE score. Following prior work (Sugden et al., 2022), we 
residualized DunedinPACE for chronological age in the mixed-age 
FHS-OC and ADNI datasets. Because age is modestly correlated with 
DunedinPACE, we residualized DunedinPACE for age to yield the rate of 
aging while accounting for the expected rate of aging given a partici-
pant’s chronological age. Because all Dunedin Study members were 
aged 45 at the time of their blood draw and MRI scans, age residuali-
zation was not necessary for analyses of Dunedin Study data. Within 
each study, DunedinPACE values were standardized to mean=0, stan-
dard deviation=1. Further details of estimating DunedinPACE in the 
Dunedin Study, FHS-OC, and ADNI have been reported previously 
(Belsky et al., 2022; Sugden et al., 2022). 

To allow for comparison of DunedinPACE with other epigenetic 
clocks, we also report cross-sectional results for the Horvath, Hannum, 
GrimAge, and PhenoAge clocks (Hannum et al., 2013; Horvath, 2013; 
Levine et al., 2018; Lu et al., 2019). Additional details about the 
calculation of these epigenetic clocks can be found in the supplemental 
materials. 

2.5. Primary analyses 

We first conducted a regression analysis of linear associations be-
tween DunedinPACE and each MRI measurement in all three datasets. 
Diagrams of each MRI measurements are presented in Fig. 1. All 
regression models controlled for sex. Models using FHS-OC and ADNI 
data also included covariates for age, age2, sex*age, and age2*sex to 
account for the age variation in these cohorts. Controlling for age helps 
protect against residual confounding that arises from the multifaceted 
relationship between age, biological aging, and age-related outcomes. 
This step is recommended in standard analyses of epigenetic aging 
clocks (Krieger et al., 2023). We did not control for age in the Dunedin 
Study because all individuals were aged 45 at the time of blood draws 
and MRI. We also controlled for intracranial volume (ICV) for all 

analyses of TBV and HC. WMHypo and WMHyper volumes were 
log-transformed for normality prior to analyses. In analyses using ADNI 
data, we included multiple timepoints within individuals in our models 
and calculated robust standard errors to account for non-independence. 

We leveraged the longitudinal nature of ADNI to test whether 
baseline DunedinPACE could predict the rate of subsequent change in 
brain structure. We restricted this analysis to data from a subset of ADNI 
participants who remained cognitively normal throughout enrollment 
(N = 153). This is because neurodegeneration in Alzheimer’s disease 
may diverge from the normative aging patterns indexed by Dun-
edinPACE. Next, we identified participants from this subset who had ≥ 3 
timepoints for each MRI measure after their first DNA methylation 
timepoint (N = 107–147, Table 2). Using this subset of cognitively 
normal participants with sufficient longitudinal MRI data, we generated 
multilevel linear models for each MRI measure with random effects for 
both person and age. Using these models, we derived trajectories to 
track decline in each MRI measure for each person (i.e., a “decline” 
curve). To focus on relative changes in brain structure, we residualized 
TBV and HC for ICV prior to generating these curves. We then tested 
whether each person’s initial DunedinPACE measure could predict their 
subsequent rate of brain structure change, after controlling for age, sex, 
and length of observation period. 

2.6. Sensitivity analyses 

We conducted three sensitivity analyses. First, white blood cell 
abundance is thought to affect whole-blood epigenetic clock estimates. 
Therefore, we repeated our analyses while controlling for white blood 
cell abundance (specifically plasmablasts, +CD8pCD28nCD45RA-T 
cells, naïve CD8 T cells, CD4 T cells, Natural Killer cells, monocytes, and 
granulocytes) estimated from DNA methylation (Horvath, 2013; 
Houseman et al., 2012). Second, carriership of the APOE ε4 risk allele 
has been associated with altered brain structure (Régy et al., 2022). 
Therefore, we repeated all analyses while including risk allele carrier-
ship as a covariate to test whether APOE ε4 could account for any 
observed associations between DunedinPACE and brain structure. We 
also computed results while stratifying by APOE ε4 carriership to discern 
how carriership of this allele affects the relationship between Dun-
edinPACE and brain structure. Finally, we tested for cross-sectional as-
sociations between DunedinPACE and brain structure in ADNI while 
stratifying by diagnoses of MCI or dementia at the time of MRI scanning. 
The diagnosis-stratified results are presented in the supplemental 
materials. 

3. Results 

3.1. Demographic characteristics 

In the Dunedin Study, 770 Study members (male=51.0 %) had both 
DNA methylation and MRI data available at age 45. The median number 
of days between blood sample collection and MRI was 1. More details on 
participants who had delays between blood sample collection and MRI 
can be found in the supplemental materials. Details showing that these 
Study members continue to represent the original birth cohort can also 
be found in the supplemental materials. Of note, 8 Dunedin Study 
members were missing APOE genotype data and were excluded from 
sensitivity analyses controlling for APOE ε4 carriership. In FHS-OC, 903 
participants (male=42 %) had both DNA methylation and MRI data. The 
mean age at the time of blood sample collection was 63.76 years 
(SD=8.11 years, range=40.00–84.00 years) and the mean age at the 
time of MRI was 64.53 years (SD=8.14 years, range=40.98–84.68 
years). The median number of days between blood sample collection and 
MRI scanning was 94. More details on participants who had delays be-
tween blood sample collection and MRI scanning can be found in the 
supplemental materials. Of note, only 820 participants in FHS-OC had 
APOE genotype data. Thus, sensitivity analyses controlling for APOE ε4 
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carriership in FHS-OC were performed on a smaller subsample than the 
main analyses. In ADNI, 649 participants (male=55.6 %) had DNA 
methylation data: 83 had only a baseline measurement, 121 had two 
measurements, 407 had three measurements, 29 had four measure-
ments, and 9 had five measurements. This yielded 1707 overall DNA 
methylation samples. The mean age at blood sample collection was 
75.41 years (SD=7.66 years). We paired DNA methylation timepoints 
with unique MRI observations that took place at a similar time (i.e., <6 
months). The median number of days between blood sample collection 
and MRI scanning for each MRI phenotype was 0, although there were 
some MRI observations with greater delays from blood sample collec-
tion. Further information on these cases can be found in the supple-
mental materials. There was some variation in the total number of 
observations and individuals included for each MRI measure. De-
scriptions of the subsamples for each measure in ADNI are presented in  
Table 1. Age distributions for all three datasets are shown in Fig. 2. 

3.2. Total brain volume 

Across all three datasets, people with accelerated biological aging, as 
indexed by faster DunedinPACE, had lower TBV (Dunedin Study: 
β = − .06, p < .001, 95 % CI: [− .09, − .03]; FHS-OC: β = − .04, p = .03, 
95 % CI: [− .07, − .004]; ADNI: β = − .06, p = .005, 95 % CI: [− .10, 
− .02]; Fig. 3). These associations were robust to white blood cell 
abundance and APOE ε4 carriership (see supplemental materials). 

3.3. Hippocampal volume 

Across all three datasets, people with faster DunedinPACE had lower 
HC (Dunedin Study: β = − .06, p = .02, 95 % CI: [− .12, − .01]; FHS-OC: 
β = − .07, p = .02, 95 % CI: [− .13, − .01]; ADNI: β = − .10, p = .004, 95 
% CI: [− .17, − .03]; Fig. 3). These associations were robust to white 
blood cell abundance and APOE ε4 carriership (see supplemental 
materials). 

3.4. White matter microlesions 

Across all three datasets, people with faster DunedinPACE had 
greater WMHypo volume (Dunedin Study: β = .08, p = .02, 95 % CI: 
[.01,.15]; FHS-OC: β = .09, p = .01, 95 % CI: [.02,.16]; ADNI: β = .11, 
p = .004, 95 % CI: [.03,.18]; Fig. 3). These associations were robust to 
white blood cell abundance and APOE ε4 carriership (see supplemental 
materials). Faster DunedinPACE was also associated with greater 

WMHyper volume in the Dunedin Study, though this effect was atten-
uated in ADNI (see supplemental materials for details). 

3.5. Cortical thickness 

Across all three datasets, people with faster DunedinPACE had 
thinner cerebral cortex (Dunedin Study: β = − .18, p < .001, 95 % CI: 
[− .24, − .11]; FHS-OC: β = − .09, p = .01, 95 % CI: [− .16, − .03]; ADNI: 
β = − .10, p = .02, 95 % CI: [− .19, − .01]; Fig. 3). These associations 
were robust to white blood cell abundance and APOE ε4 carriership (see 
supplemental materials). 

3.6. Cortical surface area 

In the Dunedin Study, people who were aging faster, as measured by 
DunedinPACE, tended to have less total cortical surface area (β = − .08, 
p = .01, 95 % CI: [− .14, − .02], Fig. 3). However, we did not observe this 
association in FHS-OC or ADNI (FHS-OC: β = − .01, p = .75, 95 % CI: 
[− .07,.05]; ADNI: β = .01, p = .81, 95 % CI: [− .07,.08]; Fig. 3). These 
results were not affected by white blood cell abundance or APOE ε4 
allele carriership (see supplemental materials). 

Table 1 
Demographic information for the ADNI DNA methylation sample. Leftmost columns show the sample size for paired observations from ADNI. We have included 
both the total number of unique observations as well as the number of individuals. The third from left column presents the mean and standard deviations of the age in 
years at which the blood draw occurred. The fourth from the left column shows the time in days between the blood draw and MRI. Rightmost three columns show the 
proportion of most recent diagnostic status (cognitively normal, mild cognitive impairment, or dementia) at the time of the blood draw.   

N       

Observations Individuals Mean age at blood draw (SD, Min- 
Max) 

Blood draw/MRI mean interval 
(days) 

CN (%) MCI (%) Dementia 
(%) 

DNA 
methylation 

1707 649 (55.6 % 
male) 

75.4 (7.66, 55.0-95.6) -  31.90 %  48.10 %  19.90 % 

Overlap with:           
TBV 1426 604 (55.0 % 

male) 
74.6 (7.50, 55.0-95.6) 2.0  31.90 %  50.90 %  17.20 % 

HC 1358 581 (54.9 % 
male) 

74.4 (7.43, 55.0-95.6) 3.6  31.90 %  51.20 %  16.90 % 

WMHypo 1078 446 (51.8 % 
male) 

74.4 (7.37, 55.0-93.1) 10.1  31.60 %  50.60 %  17.70 % 

CT 1078 446 (51.8 % 
male) 

74.4 (7.37, 55.0-93.1) 10.1  31.60 %  50.60 %  17.70 % 

SA 1078 446 (51.8 % 
male) 

74.4 (7.37, 55.0-93.1) 10.1  31.60 %  50.60 %  17.70 % 

Abbreviations: ADNI = Alzheimer’s Disease Neuroimaging Initiative; SD = standard deviation; CN = cognitively normal; MCI = mild cognitive impairment; TBV =
total brain volume; HC = hippocampal volume; WMHypo = white matter hypointensities; CT = mean cortical thickness; SA = total cortical surface area. 

Fig. 2. Age distributions in the Dunedin Study, FHS-OC, and ADNI. His-
tograms showing the age distributions in years at the time of blood draw for 
DNA methylation analysis in each dataset. Abbreviations: ADNI = Alzheimer’s 
Disease Neuroimaging Initiative; FHS-OC: Framingham Heart Study – 
Offspring Cohort. 
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3.7. Change in brain structure 

In ADNI, 153 participants with DNA methylation data remained 
cognitively normal throughout enrollment. Of these, varying numbers 
had MRI measures at a minimum of three timepoints allowing for 
calculation of change trajectories (Table 2). Analyses of data from these 
participants revealed expected age-related changes in all MRI measures 
(see supplemental materials). We did not observe significant associa-
tions between baseline DunedinPACE and subsequent change in MRI 
phenotypes (TBV: β = − .01, p = .92, 95 % CI: [− .18,.16]; HC: β = − .01, 
p = .95, 95 % CI: [− .18,.17]; WMHypo: β = .08, p = .38, 95 % CI: 

[− .10,.28]; CT: β = − .06, p = .57, 95 % CI: [− .27,.15]; SA: β = − 19, 
p = .06, 95 % CI: [− .38,.004]). 

3.8. Comparison with other epigenetic clocks 

For comparison purposes, we repeated our cross-sectional analyses 
replacing DunedinPACE with each of four well-studied epigenetic 
clocks: first-generation Horvath and Hannnum clocks, and second- 
generation PhenoAge and GrimAge clocks. Associations of first- 
generation clocks with MRI measures were mostly null. PhenoAge 
generally had non-significant associations that were smaller than 

Fig. 3. Associations between DunedinPACE and brain structure. DunedinPACE was negatively associated with TBV, CT, and HC across all three datasets, and 
positively associated with WMHypo volume across all three datasets. A) Forest plot of all associations reported as standardized betas (error bars represent 95 % 
confidence intervals). B) Scatterplots of all associations. X-axes represent standardized scores of MRI measures after residualizing for age and sex. Y-axes represent 
standardized values for DunedinPACE. Abbreviations: ADNI = Alzheimer’s Disease Neuroimaging Initiative; FHS-OC: Framingham Heart Study – Offspring Cohort; 
TBV = total brain volume; HC = hippocampal volume; WMHypo = white matter hypointensities, CT = mean cortical thickness, SA = total cortical surface area. 
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DunedinPACE (Fig. 4). GrimAge had significant associations of similar 
magnitude to DunedinPACE in the Dunedin Study and FHS-OC; how-
ever, GrimAge only had a significant association with CT in ADNI 
(Fig. 4). Complete details of these analyses are presented in supple-
mental materials. 

4. Discussion 

By aggregating three large datasets, we assembled the largest sample 
to date for examining associations between epigenetic clocks and brain 
anatomy. Using this sample, we showed that DunedinPACE, an epige-
netic index of an individual’s pace of biological aging derived by 
tracking multi-organ decline from age 26 to 45 in a same-age birth 
cohort of healthy people, is associated with several MRI measures of 
brain structure in three independent datasets encompassing mid- to late- 
life. In all three datasets, people with accelerated biological aging, as 
indexed by higher DunedinPACE scores, had smaller total brain volume, 

smaller hippocampal volume, greater burden of white matter micro-
lesions, and thinner cerebral cortex. These results are consistent with the 
geroscience hypothesis of correlated decline across the entire body 
(Kennedy et al., 2014). The geroscience hypothesis argues that aging is a 
stochastic process leading to gradual loss of system integrity across all 
organ systems. We showed that faster decline of non-nervous organ 
systems (i.e., cardiovascular, metabolic, renal, immune, dental, and 
pulmonary) is associated with individual differences in brain structure 
during midlife and older age, supporting the idea that aging simulta-
neously affects organ systems across the entire body. Our findings also 
align with recent work showing that aging of body organ systems is 
associated with aging of the brain (Elliott et al., 2021a; Tian et al., 
2023), and further demonstrate that this association can be captured 
using a blood sample from a single timepoint. 

The associations between DunedinPACE and MRI measures of brain 
structure were consistent across our three datasets despite differences in 
cohort demographics. The Dunedin Study, FHS-OC, and ADNI differ 
substantially in participant age (Dunedin Study: age=45; FHS-OC mean 
age=64; ADNI mean age=75; Fig. 2). ADNI is also highly enriched for 
Alzheimer’s disease and related dementias, whereas the Dunedin Study 
and FHS-OC are not. Approximately 18 % of the ADNI participants in our 
cross-sectional analyses had been diagnosed with dementia at the time 
of assessment. In contrast, no participants in either the Dunedin Study or 
FHS-OC datasets were diagnosed with dementia. Notably, associations 
between DunedinPACE and brain structure across all three datasets are 
similar in magnitude to those between direct, longitudinal measures of 
organ-system decline and MRI measures in the Dunedin Study (Elliott 
et al., 2021b). Thus, a single timepoint calculation of DunedinPACE 
closely replicates associations between brain and body aging estimated 
from longitudinal measurements of multiple organ systems. The fact that 
the observed effect sizes are generally consistent between the Dunedin 
Study, FHS-OC, and ADNI further suggests good generalizability of 
DunedinPACE across age and cognitive status. 

Our findings indicate that DunedinPACE had strong and consistent 
associations with brain structure relative to first-generation epigenetic 
clocks. Across all three datasets used here, associations between first- 
generation epigenetic clocks and brain structure were null or very 

Table 2 
Demographic description for the ADNI longitudinal MRI sample. Sample 
size, sex, average age, and average observation length for ADNI participants who 
remained cognitively normal during ADNI enrollment and with ≥ 3 MRI time-
points after DNA methylation observation.  

MRI 
phenotype 

N Mean age at baseline 
(SD, Min-Max) 

Mean observation 
length (years) 

TBV 128 (48 % 
male) 

74.94 (6.67, 62.3-93.5)  5.54 

HC 122 (48 % 
male) 

74.52 (6.31, 62.3-93.5)  5.61 

WMHypo 92 (46 % 
male) 

74.96 (6.33, 63.4-91.1)  4.73 

CT 92 (46 % 
male) 

74.96 (6.33, 63.4-91.1)  4.73 

SA 92 (46 % 
male) 

74.96 (6.33, 63.4-91.1)  4.73 

Abbreviations: ADNI = Alzheimer’s Disease Neuroimaging Initiative; TBV =
total brain volume; HC = hippocampal volume; WMHypo = white matter 
hypointensities; CT = mean cortical thickness; SA = total cortical surface area 

Fig. 4. Comparison between epigenetic clocks. Forest plots of associations between each epigenetic clock and TBV, HC, WMHypo, CT, and SA in the Dunedin 
Study, FHS-OC, and ADNI. Abbreviations: ADNI = Alzheimer’s Disease Neuroimaging Initiative; FHS-OC = Framingham Heart Study – Offspring Cohort; TBV = total 
brain volume; HC = hippocampal volume; WMHypo = white matter hypointensities; CT = mean cortical thickness; SA = total cortical surface area. 
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close to zero. Previous neuroimaging research using first-generation 
epigenetic clocks has yielded inconsistent associations with brain 
structure (Cheong et al., 2022; Chouliaras et al., 2018; Davis et al., 2017; 
Proskovec et al., 2020; Raina et al., 2017). This is likely due to under-
powered study designs (Liu et al., 2023). One study also using the ADNI 
dataset reported an association between hippocampal volume and the 
Hannum clock (Milicic et al., 2022); however, this association was 
restricted to a sample of 34 amyloid-β+, cognitively unimpaired in-
dividuals with > 3 timepoints of MRI data. Of note, that study did not 
find a significant association between the Hannum clock and brain 
structure, including hippocampal volume, in the larger ADNI sample 
(Milicic et al., 2022). While we find that first-generation clocks tend to 
show null associations with MRI measures, a second-generation clock, 
GrimAge, was associated with brain structure in both the Dunedin Study 
and FHS-OC, although, GrimAge associations with TBV and HC were 
null in ADNI. Overall, our findings suggest that newer epigenetic clocks 
such as DunedinPACE and GrimAge may have greater promise for 
gauging brain structure relative to first-generation epigenetic clocks. 
This is in line with the growing consensus that aging biomarkers trained 
only on chronological age have limited ability to detect age-related 
health outcomes whereas aging biomarkers trained on the rate of bio-
logical aging are more associated with to age-related health outcomes 
(Moqri et al., 2023; Zhang et al., 2019). 

We did not find evidence that baseline DunedinPACE predicted 
subsequent risk-related change in brain structure in ADNI participants 
who remained cognitively normal throughout enrollment. However, the 
analytic sample with the requisite three MRI scans to model trajectories 
of reliable change in brain structure was small. This reduced statistical 
power and limited our ability to detect associations. Notably, in all three 
datasets, DunedinPACE was associated with TBV controlling for ICV, 
which is thought to represent the ‘maximal’ size a person’s brain 
reached during their life as the cranial cavity does not shrink during 
aging (Royle et al., 2013). “TBV controlling for ICV” is sometimes 
interpreted as a proxy measure for longitudinal atrophic decline in TBV 
since childhood (Royle et al., 2013). While speculative, this suggests the 
hypothesis that faster DunedinPACE could potentially be associated 
with accelerated neurodegeneration. Even so, without longitudinal data 
we cannot rule out that this association simply reflects natural vari-
ability in brain-to-head size ratio. Research using larger longitudinal 
samples is needed to test this hypothesis. 

Our findings are consistent with a recent report using data from the 
UKBiobank (Tian et al., 2023) to reveal that change in multiple indi-
vidual organ systems (i.e., musculoskeletal, cardiac, metabolic, and 
pulmonary) each mapped onto change in the brain. Here we demon-
strate a similar brain-body connection using DunedinPACE, a single 
timepoint DNA methylation measure trained on longitudinal decline in 
multiple organ systems. These two reports using complementary designs 
show that MRI measures of brain structure are correlated with pro-
gressive, multi-organ decline in the rest of the body. Future studies 
should longitudinally measure multiple organ systems to address which 
is more relevant for brain aging: decline unique to individual organs, or 
the shared decline across organs predicted by the geroscience hypothesis 
and operationalized through DunedinPACE. 

Our study has limitations. First, most of the data analyzed were 
derived from White participants reflecting the paucity of racial and 
ethnic diversity in datasets that have both DNA methylation and brain 
MRI. Notably, there is evidence that DunedinPACE can index health 
outcomes amongst both Black and Asian individuals (Graf et al., 2022; 
Schmitz et al., 2022; Schmitz and Duque, 2022; Shen et al., 2023). 
Second, DunedinPACE does not necessarily represent methylation of 
specific genes thought to contribute to neurodegeneration or aging 
progression, and is best thought of as a non-causal statistical indicator of 
multi-organ decline. Third, although we observed a robust three-dataset 
association between DunedinPACE and WMHypo volume, the associa-
tion between DunedinPACE and WMHyper was only observed in one out 
of the two studies where this measure was available. While these two 

measures are sometimes thought to be roughly equivalent (Wei et al., 
2019), there is some evidence to suggest that T1-hypointense white 
matter lesions could represent the more severe and clinically relevant 
components of white matter damage (Melazzini et al., 2021). Finally, we 
were only able to assess change in brain structure in one dataset, ADNI, 
which had the smallest number of individuals without dementia and 
who were advanced in age (i.e., age>80 years). We recommend larger, 
more diverse, and more population-representative studies to assess how 
DunedinPACE is related to change in brain structure. 

In summary, we present evidence that accelerated biological aging, 
as indexed by faster DunedinPACE, is consistently associated with brain 
structure across three large datasets spanning midlife to older age. This 
suggests that the geroscience hypothesis of correlated, progressive 
decline of organs includes the central nervous system. We build on prior 
work by demonstrating that associations between brain and body aging 
can be detected using a single timepoint whole blood measure of DNA 
methylation. Collectively, these findings reinforce that aging is a whole- 
body process and suggest that aging neuroscience research stands to 
benefit from further attention to organs ‘below the neck’. 
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