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Abstract 

Background:  The field of epigenomics holds great promise in understanding and 
treating disease with advances in machine learning (ML) and artificial intelligence 
being vitally important in this pursuit. Increasingly, research now utilises DNA methyla-
tion measures at cytosine–guanine dinucleotides (CpG) to detect disease and estimate 
biological traits such as aging. Given the challenge of high dimensionality of DNA 
methylation data, feature-selection techniques are commonly employed to reduce 
dimensionality and identify the most important subset of features. In this study, our 
aim was to test and compare a range of feature-selection methods and ML algorithms 
in the development of a novel DNA methylation-based telomere length (TL) estima-
tor. We utilised both nested cross-validation and two independent test sets for the 
comparisons.

Results:  We found that principal component analysis in advance of elastic net regres-
sion led to the overall best performing estimator when evaluated using a nested 
cross-validation analysis and two independent test cohorts. This approach achieved a 
correlation between estimated and actual TL of 0.295 (83.4% CI [0.201, 0.384]) on the 
EXTEND test data set. Contrastingly, the baseline model of elastic net regression with 
no prior feature reduction stage performed less well in general—suggesting a prior 
feature-selection stage may have important utility. A previously developed TL estima-
tor, DNAmTL, achieved a correlation of 0.216 (83.4% CI [0.118, 0.310]) on the EXTEND 
data. Additionally, we observed that different DNA methylation-based TL estimators, 
which have few common CpGs, are associated with many of the same biological 
entities.

Conclusions:  The variance in performance across tested approaches shows that 
estimators are sensitive to data set heterogeneity and the development of an optimal 
DNA methylation-based estimator should benefit from the robust methodological 
approach used in this study. Moreover, our methodology which utilises a range of 
feature-selection approaches and ML algorithms could be applied to other biological 
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markers and disease phenotypes, to examine their relationship with DNA methylation 
and predictive value.

Keywords:  DNA Methylation, Telomere Length, Feature Selection, Feature Reduction, 
Machine Learning, Aging

Background
Epigenetic biomarkers such as those derived from 5-methyl cytosine (DNA methyla-
tion) can help to address important questions across a myriad of biological fields. DNA 
methylation-based estimators and classifiers are models developed using statistical and 
machine learning (ML) methods that utilise DNA methylation data for the estimation 
of a range of variables including biological age, telomere length (TL), disease diagno-
sis, smoking status and body mass index (BMI). As illustration of their utility—instead 
of using chronological age, an imperfect surrogate measure of the ageing process, DNA 
methylation-based age estimates that indicate biological aging of a person can be used to 
investigate the impact of stress factors on individuals of the same chronological age [1]. 
Similarly, many studies utilise self-reported smoking information whose inaccuracies 
can propagate through medical research studies [2, 3]. An accurate epigenetic estimator 
of smoking history can serve to ameliorate this issue. Furthermore, the importance of 
epigenetic mechanisms such as DNA methylation has become evident in the pathogen-
esis of various diseases, with DNA methylation markers emerging as potential clinical 
biomarkers [4]. Recently, an expanding body of work involving DNA methylation-based 
ML and deep learning approaches and their utility to estimate and predict a range of 
quantitative traits including chronological age [5–16], epigenetic smoking scores [17–
20] and body mass index (BMI) [21] have increasingly become apparent.

Current limitations in the accuracy and efficacy of developed estimators include the 
fact that each estimator’s performance is data set dependent, leading to variability in 
the markers selected across different estimators of the same traits. Furthermore, stud-
ies that utilise DNA methylation-based data for purposes such as disease classification 
or estimation of a trait sometimes only explore a single feature-selection method or, at 
best, a relatively limited range. Data sets generated from high-throughput DNA meth-
ylation arrays measure methylation levels at CpG sites along the DNA sequence, thus 
providing features for statistical and ML models. They typically contain extremely high 
numbers of features in combination with small sample sizes, and can suffer from the 
curse of dimensionality [22]. Feature-selection methods can return a subset of variables 
that may reduce the effects of noise or irrelevant features while still providing useful 
prediction results [23]. Additionally, they can reduce computation time and potentially 
improve predictive performance [24, 25]. They are often employed to reduce the high 
dimensionality of input datasets, mitigate collinearity, and, in conjunction with a learn-
ing algorithm, estimate the quantitative trait of interest.

There are different approaches to feature-selection. Filter methods, a commonly used 
approach for high dimensional data, usually perform feature ranking based on statisti-
cal or information theoretic measures which generate a score that captures the amount 
of information each independent variable has about the dependent variable [25]. These 
fast methods are independent of the predictive model but can suffer from selecting 
redundant features. Choosing the best filter approach depends very much on the level of 
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computational resources available to the researcher [25]. Wrapper methods in contrast 
utilize performance metrics of the predictive model to select the best feature subsets 
while embedded methods include feature-selection in the process of the modelling algo-
rithm’s execution [26, 27].

These feature-selection methods naturally lead to dimension reduction but there are 
other methods which can also achieve this. Principal component analysis (PCA) is the 
dominant feature transformation technique, capturing most of the variance in the data 
by projecting the data into a reduced feature space. This transformative method, which is 
commonly used in ML, yields a set of orthogonal variables (principal components) that 
are linear combinations of the original variables [28]. In this sense, it has less utility for 
identifying specific features e.g., for acquisition of an explicit biological signature. How-
ever, its ability to tackle multicollinearity (the presence of strong relationships between 
variables in a data set), which can impact the performance of statistical and ML-based 
models, makes it a potentially powerful technique for development of an estimator pri-
marily sought for its predictive capability [29]. It has recently been employed in [30] to 
reduce noise in CpG-level DNA methylation data and improve reliability of epigenetic 
clocks.

Using telomere length as a vehicle to explore a robust methodology, our study wishes 
to build on previous ML studies in the epigenomics field by evaluating a range of fea-
ture-selection methods and ML algorithms to identify a novel DNA methylation-based 
estimator of TL and investigate its association with other health-related demographics. 
Telomere length—DNA repeat structures which are located at the ends of each chro-
mosome and have a crucial role in maintaining genomic stability—has emerged as a 
promising biomarker for biological age [31–33]. In recent years an association between 
TL and epigenetic processes has been hypothesised. Recently, Lu et al. [34] developed a 
DNA methylation-based estimator of TL (DNAmTL) which utilised 140 cytosine-phos-
phate-guanine dinucleotides (CpGs) using a regression-based ML approach (i.e. elastic 
net [35]), highlighting the power of ML methods to develop robust DNA methylation-
based estimators.

In this study, we first reviewed the literature to ascertain feature-selection and learning 
algorithms commonly used in the epigenomics field for the estimation of quantitative 
traits. Due to the popularity in the published literature of elastic net penalised regression 
for epigenetic aging signatures and its use in the previously reported DNA methylation-
based TL estimator [34], this approach forms the baseline algorithm in our study. Many 
studies also utilise some form of initial feature-selection in advance of applying elastic 
net, therefore we also investigated applying a range of feature-selection methods as an 
initial step. Previous studies have utilised association tests corrected for multiple test-
ing, using false discovery rate (FDR) thresholds [6–8]. The FDR has demonstrated ability 
to detect true positives while controlling Type I errors at a designated level with meth-
ods such as the Benjamini and Hochberg step-up procedure (BH) [36] and q-value [37] 
arguably the most widely used and cited approaches for FDR control in practice [38]. In 
addition to association tests, studies have employed thresholding of correlation between 
CpGs and the quantitative target feature using Pearson’s correlation coefficient [6, 13, 
39–41], and mutual information [42–44].
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Additionally, ensemble ML algorithms such as random forest can be used to obtain a 
set of ranked features and is among the methods investigated in this study. Several com-
parative studies demonstrated that Support Vector Regression (SVR) performed well as 
an alternative to elastic net and other regression-based approaches [8, 41, 45], and we 
also explore this method along with several other regression algorithms in conjunction 
with feature-selection. In total, we develop and evaluate thirteen TL estimators, each 
adopting a different feature-selection and regression algorithm methodology. In addi-
tion to identifying a novel DNA methylation-based estimator of TL, we aim to develop a 
robust methodology utilising ML algorithms which could be applied to other biological 
markers and disease phenotypes, to examine their relationship with DNA methylation.

Methods
Data description

The data is comprised of 3 cohorts (Dunedin, EXTEND and TWIN), which have meas-
ures of both TL and Illumina DNA methylation array data (summarised in Table  1). 
The Dunedin data set pertains to a cohort (n = 1037) born in Dunedin, New Zealand 
between April 1972 and March 1973 as described elsewhere [46]. Assessments occurred 
at a range of ages, most recently at age 45 when 938 of the living 999 study members 
took part. We have used data from two sweeps of the study i.e., ages 26 and 38. With two 
time points, most participants contributed two samples and, after preprocessing, 1631 
samples were utilised. The DNA methylation data was derived from whole blood and 
measured using the Illumina Infinium HumanMethylation450 BeadChip [47] (Illumina, 
CA, USA). TL was measured using a validated quantitative PCR (qPCR) method [48], as 
previously described [49].

The validation EXTEND data set (n = 192) is a subset of the Exeter 10,000 epidemio-
logical cohort as described in detail elsewhere [50]. The second validation TWIN data 
set (n = 178) involves a cohort previously recruited from a multi-centre collaborative 
project aimed at identifying DNA methylation differences in MZ twin pairs discordant 
for schizophrenia as described elsewhere [51]. The same laboratory measured TL by a 
validated qPCR method [52] in both the EXTEND and TWIN validation cohorts, as 
described previously [50]. DNA methylation levels were measured in the same labs using 
the Illumina Infinium methylation array platform for both the EXTEND and TWIN 
validation cohorts. For all 3 data sets the methylumi package [53] was used to extract 
signal intensities for each CpG probe and perform initial quality control, with data nor-
malization and pre-processing using the wateRmelon package as described previously 
[54]. All experiments were performed in accordance with national guidelines and regula-
tions as well as the Declaration of Helsinki. The Dunedin study participants gave writ-
ten informed consent, and study protocols were approved by the NZ-HDEC (Health and 

Table 1  Summary details—data sets

Name Samples Features

Dunedin 1631 431,553

EXTEND 192 430,574

TWIN 178 482,369
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Disability Ethics Committee). For both the EXTEND and TWIN studies, informed con-
sent was obtained from participants and ethical approval was obtained from University 
of Exeter Medical School Research Ethics Board.

DNA methylation levels at CpG sites formed the input features for models while the 
target variable was TL. For consistency across datasets relative telomere lengths were re-
calculated for each cohort separately as described previously [49]. Briefly, reaction effi-
ciencies (E) were calculated from the standard curve slope using E = 10(1/-slope). Next, 
relative quantities (RQs) were calculated using RQ = EΔCt where ∆Ct is the difference 
between the average Ct value of the within-plate mean Ct, and the Ct value of the indi-
vidual sample. Sample RQ values were calculated for each reaction separately (T and 
S). The telomere length relative to the amount of single-copy transcript was calculated 
using the ratio RQ(T)/RQ(S). Finally, relative telomere lengths were adjusted based on 
plate ID via linear regression to control for plate-to-plate variation for each cohort. Any 
CpG columns containing missing values were not utilised in the development of the final 
estimators, with the initial set of CpG sites restricted to 417,690 common to all three 
data sets.

Modelling overview

For the application of the regression algorithms and the feature-selection methods used 
in this paper, the Python software package scikit-learn (version 0.23.2) was utilised [55]. 
Stage 1 of our analysis involved the comparison of a range of models that utilised dif-
ferent feature-selection methods in conjunction with elastic net regression i.e., DNA 
methylation-based TL estimators. A nested cross-validation process, which includes 
hyperparameter tuning, was utilised for model comparison which has been suggested 
as a more appropriate approach when assessing a model, providing a reliable estimate of 
the true error [56, 57], and avoiding information leakage from test data into the training 
process. A range of performance metrics are reported in this study. These include the 
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Pearson 
correlation coefficient between predicted and actual TL (described in Section 1 of Addi-
tional file 1).

The nested cross-validation (CV) process to assess model performance was employed on 
the Dunedin data set. The data was first split into train and test data sets in 80%:20% pro-
portions respectively i.e., DStrain and DStest. Each feature-selection method (or feature trans-
formation method in the case of PCA) was applied wholly to DStrain, which yielded a subset 
of features. Using only these features, threefold cross-validation was then applied to DStrain 
using elastic net in order to choose the best model hyperparameters (via a random search) 
based on the mean absolute error (MAE) metric. The next step involved constructing an 
elastic net model on DStrain (using the discovered feature subset and best parameters). 
This model (i.e., the estimator) was then used to predict the instances contained in DStest, 
yielding a range of pertinent performance scores (MAE, MAPE and correlation coefficient 
between predicted and actual TL) to indicate estimator efficacy. This constitutes one itera-
tion of the fivefold outer cross-validation that is part of the 5 × 3 nested CV process, and it 
is therefore repeated for each of the other outer cross-validation iterations. The nested CV 
process was conducted for each of the 9 investigated estimators (the baseline using elastic 



Page 6 of 30Doherty et al. BMC Bioinformatics          (2023) 24:178 

net and 8 feature selection/transformation methods followed by elastic net). The estimators 
were then compared by considering the combination of the aforementioned performance 
scores. The feature-selection methods and their application in this first stage of the analysis 
are outlined in “Feature-selection methods” Section.

The next stage of the analysis (Stage 2) involved using the same 9 approaches from Stage 
1 to construct DNA methylation-based estimators from the full Dunedin data set. These 
estimators were then tested on the two sets of independent data (EXTEND and TWIN). 
Unlike the performance results from the first stage which were generated from nested CV 
analysis on a single data set, the results of this second stage of analysis represent estimator 
performance on data originating from different laboratories and populations from which 
the estimators were trained. As such, this extended our model comparison process from 
nested CV on a single data set to evaluation on 2 independent data sets.

To obtain feature subsets from the Dunedin data, the 9 approaches were applied to the 
full Dunedin data set, in each case returning an N feature subset. With these N features, 
tenfold cross-validation, with a grid search, was conducted on the Dunedin data to find a 
good set of model hyperparameters. Using the N features and best identified parameters, 
estimators were then constructed from the Dunedin data and used to make predictions on 
the 2 independent validation sets. The majority of subjects in the Dunedin data set con-
tributed 2 samples for analysis. Therefore, all data partitioning (such as within the cross-
validation process) was implemented such that, where 2 samples pertain to a subject, both 
samples were contained within the same partition. This prevents information leakage, 
ensuring subject independence across data partitions. An overview of the process is pre-
sented in Fig. 1.

Elastic net regression and feature‑selection methods

Elastic net regression

Given its common usage in DNA methylation-based age prediction studies [5, 7, 8, 10] and 
its application in a recent TL estimator [34], elastic net regression was used as a baseline 
model for TL estimation from DNA methylation data in this study. Regularized models, 
like elastic net regression, facilitate the selection of predictive CpGs among correlated 
markers when the ratio of features to samples is very large [58]. With too much freedom, 
a model can be prone to over-fitting due to too many available features. One solution to 
this is regularisation where extra terms are introduced into the objective function that 
penalise extreme values of regression coefficients and, thus, encourages them to take small 
values unless absolutely necessary. Elastic net regression is an embedded feature-selection 
approach, and its algorithm includes dimensionality reduction or intrinsic feature-selec-
tion. This may be a reason for its popularity in this domain.

In elastic net regression, the input variables, X, and output variable, y, are represented by 
a least squares relationship, given as: y = β0 + βX + e, where β0 is the intercept, and β and e 
are the vectors of regression coefficients and residuals respectively. Elastic net employs a 
mixture of both the l1 and l2 penalties and can be represented as:

1+
�2

n
argminβ y− Xβ||2

2
+ �2 β||2

2
+ �1||β||1
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where �y− Xβ2

2
� is the l2-norm loss function (i.e., the residual sum of squares), ‖β2

2
‖ is 

the l2-norm penalty on β , λ2 is a regularisation (complexity) parameter, β1 is the l1-norm 
penalty on β and λ1 is a regularisation parameter. Setting α =

�2
�1+�2

 , the elastic net esti-
mator is shown to be equivalent to the minimisation of: argminβ �y− Xβ2
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2
 ≤ s, for some s [59]. The param-

eter α is known as the mixing parameter as it defines how the l1 and l2 regularisation 
is mixed. The elastic net model was tuned using the regularisation parameters, λ, and 
the mixing parameter α. Over a grid search of parameter values, the parameter pairing 
which returned the minimum MAE corresponded to the optimal model from the cross-
validation parameter tuning process. The parameter ranges used in the grid search pro-
cess were [1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 1 × 10−1, 0.25, 0.5, 1, 10, 100] and [0.01, 
0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99, 1] for the λ and α parameters respectively.

Fig. 1  Overview of elastic net model development process including feature reduction and model selection 
stages. The graphic includes the nested cross-validation process which is used for both internal validation 
(comparison of models within the Dunedin data set) and to find an optimal number of features from the 
ranking-based filter methods. For independent test set evaluation, training is conducted on the full Dunedin 
data set which is then used for TL estimation in test sets. See “Modelling overview” and “Feature-selection 
methods” Sections for further details. MAE Mean absolute error, CV Cross-validation, FDR False discovery rate, 
TL Telomere length
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Feature‑selection methods

The feature-selection methods used in this work include a number of filter feature-
selection approaches which typically require some user-specified threshold that deter-
mines the set of features used. For the F-test approach, the false discovery rate is set at 
a threshold value—we use both 0.05 and 0.01 as these are typically used in this domain. 
Utilising these thresholds will return a set of features.

The other filter feature-selection approaches used provide a ranking of the features. 
Using Pearson and mutual information, the correlation strengths and actual information 
gain between each independent variable and the dependent variable respectively can be 
ranked. With support vector regression, the regression coefficients can be ranked, while 
the decision tree ensemble approach (random forest) returns a feature importance score 
that allows feature ranking.

The reduced feature set can be selected using a threshold of some sort on this ranking, 
e.g., by choosing those with scores higher than a threshold score or by specifying a num-
ber of features to use. We select the number of features to use for each method by deter-
mining the set that performs best on the training data. We chose to investigate models 
with successively larger feature subset sizes, in an effort to find the model that corre-
sponded to the error minima/correlation maxima. In Stage 1 of the analysis (nested CV), 
elastic net regression models were created after initial feature selection using each of the 
four ranking feature-selection methods, i.e., for ranked feature subsets of 50, 100, 150, 
200, 250, and in steps of 250 thereafter up to 20,000 features. Nested CV performance 
scores were then plotted against feature subset size to yield curves for examination of 
the effect of increasing feature subset size, and from which an optimal point (feature 
subset size) could be selected for the stage 2 and stage 3 analyses.

The other feature-selection approaches used in this study include the embedded 
feature-selection techniques of elastic net, which is our baseline approach, and gradi-
ent boosting which is a decision tree ensemble technique which includes regularisation. 
Both these techniques yield a unique feature subset from the application of the algo-
rithm. We also used PCA which is a feature transformation approach. The principal 
components were derived from training data and used to project both training and test 
data into the training PCA subspace. More detail is given on the individual feature selec-
tion/transformation methods in Table 2, while Table 3 outlines commonly used feature-
selection approaches from a range of studies that utilise DNA methylation data.

Other regression‑based learning algorithms

In the third stage of analysis (Stage 3), estimators were constructed by combining a 
range of different regression algorithms with the feature subset utilised in the estimator 
judged to be the most promising from the Stage 2 analysis. These included partial least 
squares regression, multi-layer perceptron, least angle regression and support vector 
regression—these models had relatively low computational overhead, unlike some other 
algorithms which would require long run times, given that feature set sizes can still be 
relatively large after the feature-selection stage. The same training, feature-selection, 
cross-validation and testing methodology was used as described for the Stage 2 analysis.
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Table 2  Summary of feature-selection techniques used in this study

Type Feature-selection method Description

Filter—univariate Correlation-based (Pearson’s r) Pearson’s correlation for two random variables 
a and b is given as: ρ(a,b) = cov(a,b)/(σaσb) 
where cov(a,b) is the covariance or cross-cor-
relation of a and b and σ denotes the standard 
deviation [60]. Pearson’s correlation coefficient 
(r) is a measure of linear association, and it 
is used in epigenetic studies to measure the 
strength of association between each feature 
and the response variable. A threshold value 
is usually applied, excluding all features below 
that value.

Multiple hypothesis testing (F-test with FDR) F-test statistic or associated p-value can be 
used as a threshold score for association 
between a feature and response. The false 
discovery rate (FDR) can be used to detect true 
positives while controlling Type I errors at a 
designated level. F-tests between the methyla-
tion value of each CpG and TL are conducted, 
with those CpG sites with FDR (Benjamini-
Hochberg [36]) less than a specified value 
being selected.

Mutual Information Mutual information can be formulated as: 
MI = H(x) + H(x|y), where H(x) is the entropy 
of feature x and H(x|y) denotes the entropy of 
feature x after observing feature y. The values 
of mutual information per feature are typically 
ranked with a threshold utilised to remove the 
most redundant features (CpGs) [43].

Filter—regression Support Vector Regression The absolute value of the weights (coef-
ficients) yielded by the support vector 
regression (SVR) algorithm can be utilised to 
create a set of ranked features. In the case of a 
linear kernel, the SVR model can take the form: 
prediction(x) = b + wTx where w = 

∑

i

αi xi , with 
the vector of weights w directly accessible. 
The features with higher absolute weights 
are considered to be more likely to be useful 
for model training and prediction, conversely 
smaller weights are thought to not have a 
large influence on predictions [61].

Filter—ensemble Random Forest Regression Random forests [62] can handle correlated 
data and high dimensionality [63]. This 
ensemble method for classification and regres-
sion utilises bagging (subsets of samples) 
and boosting (subsets of features) to ensure 
diversity across constituent tree models. As 
trees only use a portion of samples in their 
construction, the remaining samples can be 
used to generate feature importance scores via 
feature value shuffling, with the impact of this 
shuffling assessed over the whole ensemble 
[64].
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Statistical analysis

Pearson’s correlation coefficient was used to assess the strength of linear association 
between actual and estimated TL in all cohorts. In addition, Pearson’s correlation was 
calculated between the four TL measures (actual TL, MI-EN TL, PCA-EN TL and 
DNAmTL) and age in the EXTEND and TWIN cohort—where MI-EN TL and PCA-
EN TL are the estimators that utilised mutual information-based and principal compo-
nent analysis-based feature reduction in advance of elastic net regression respectively. 
The strength of correlation (Pearson) between age acceleration (obtained by regressing 
DNAmAge [5] on age) and both actual and predicted TL was also assessed.

Where confidence intervals (CI) were calculated for reported correlations, we utilised 
83.4% intervals per the recommendation by Knol et al. [73]. In the assessment of effect 
modification, the overlap of 95% CI is regularly used, wherein a type I error probability 
of 0.05 is often mistakenly assumed. That is, the chance of finding a non-overlapping 

Table 2  (continued)

Type Feature-selection method Description

Embedded Elastic net This is a regularised regression method and 
embedded feature-selection approach. It 
includes both the l1 and l2 norms in the objec-
tive function and tunes the bias towards one 
of the norms using a hyperparameter [65].

XGBoost XGBoost [66] utilises gradient boosted decision 
trees and can generate feature importance 
scores through the degree that each feature 
split point enhances performance, weighted 
by the number of observations relating to a 
node [67]. BoostARoota [68] is an embedded 
method which uses XGBoost as its base learner 
and returns a reduced feature set through 
regularisation.

Transformative Principal Component Analysis (PCA) PCA is applied to a data set containing vari-
ables, which are, in general, inter-correlated. It 
finds new variables which are linear combina-
tions of the original variables that maximise 
variance but are uncorrelated with each other 
[69].

Table 3  Commonly used feature-selection approaches in DNA methylation-based studies

Filter methods Embedded 
method

Univariate Ensemble-
based

Regression-
based

Correlation-
based

Multiple 
Hypothesis 
Testing

Mutual 
Information

Random Forest Support Vector 
Regression

Elastic Net 
only/Gradient 
Boosting

Koch and Wag-
ner [39]
Weidner et al. 
[13]
Bekaert et al. 
[40]
Xu et al. [45]
Zhu et al. [9]
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95% CI is assumed to be 0.05 under the null hypothesis that there is no statistically sig-
nificant difference in a set of observations. The authors recommend an adjusted confi-
dence level (83.4%) to arrive at a Type I error probability of 0.05. We utilised the online 
correlation coefficient confidence interval calculator [74].

To avoid age confounding potential relationships between actual and estimated TL 
measures and age-related traits, age-adjusted measures were generated for the EXTEND 
data. This was achieved by regressing actual TL, MI-EN TL and PCA-EN TL on age, 
with the raw residuals of this process being defined as TLadjAge, MI-ENadjAge and 
PCA-ENadjAge respectively. Accordingly, Pearson’s correlation was assessed between 
these age-adjusted measures and estimated blood cell counts for the EXTEND data set. 
The same analysis was performed for the TWIN data set (not adjusted for age). Fur-
thermore, repeated measures correlation was used to examine the correlation between 
actual TL/MI-EN TL/PCA-EN TL and actual blood cell counts available for the Dunedin 
cohort. This method accounts for repeated measures for the same individuals at ages 26 
and 38—addressing non-independence among observations by statistically adjusting for 
inter-individual variability using analysis of covariance [75].

Multiple linear regression models were used to explore a range of biological correlates 
i.e., the association between variables such as TL (both actual and estimated) and par-
ticipant traits (e.g., age and sex), while controlling for confounders. Tests were two-sided 
and the statistical significance level was defined as p < 0.05. Actual TL was z-score trans-
formed before conducting the regression analysis to allow for easier interpretation of 
coefficients [76].

The estimator previously developed by Lu et al. (DNAmTL) [34] was compared with 
the estimators constructed in our study. The ability of the compared estimators was 
assessed via MAE, MAPE, and the Pearson correlation coefficient between predicted 
and actual TL, on both our independent data sets (EXTEND and TWIN).

Results and discussion
Nested cross‑validation analysis on Dunedin data set

A comparison of nested CV MAE on the Dunedin data set for the 9 feature-selection 
models investigated in this study is shown in Fig. 2. Models utilise elastic net regression 
following application of each feature-selection/transformation method, with the excep-
tion of the baseline model which applies elastic net regression with no prior feature-
selection stage.

Figure 2 shows that the model that utilises the Pearson correlation-based feature rank-
ings performed relatively well at a lower number of features. On closer inspection of the 
graph, a feature set size of approximately 750 is close to the minimum error observed for 
that model. We will utilise this feature set size in stage 2 of our analysis where models 
are constructed based on the full Dunedin data set and tested on the 2 independent data 
cohorts. The model that utilises linear SVR feature rankings can be seen to progressively 
improve up to approximately 13,750 features—however we elected to utilise a more par-
simonious model with 8500 features which corresponds to one of the best MAE values 
(Fig. 2) and a near maximum correlation between predicted and actual TL (Fig. 3). The 
model that implements PCA in advance of elastic net regression yields the lowest error 
across all models. Although PCA is not strictly a feature-selection technique but rather a 
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feature transformation method, we were interested to assess its performance, given that 
multicollinearity is a known challenge in high-dimensional data when applying statisti-
cal methods [29, 77]. The results suggest that the orthogonality of the transformed varia-
bles (principal components) mitigated, to some extent, the issue of correlated predictors.

In addition to assessing the MAE, it is useful to also consider the Pearson correlation 
coefficient between predicted and actual TL and previous studies report this when con-
sidering the efficacy of TL estimation [34, 78]. For the same models shown in Figs.  2 
and 3 shows the Pearson correlation coefficient between the predicted and actual TL. 
In Fig. 3, the Pearson correlation-based feature ranking method with elastic net again 
indicates relatively good performance at a lower feature set size, with a peak observed 
at approximately 750 features. It is notable that performance is seen to increase for this 
model as the number of features approaches 20,000. However, it is important to con-
sider that, in the field of epigenetics, there can be an advantage in discovering relatively 
smaller feature subsets (biological signatures) given that this facilitates both model 
interpretation and downstream biological interpretation of DNA methylation estimators 
of biological traits. However, larger feature numbers may have more utility to estimate 
telomere length in population-based studies.

Fig. 2  Comparison of 9 feature selection/transformation models using the MAE of the 5 × 3 nested CV 
analysis. The four line plots relate to those feature-selection methods that yield an explicit feature ranking e.g., 
mutual information, thus allowing plotting of successively larger feature subsets (models were constructed 
for feature sets of sizes 50, 100, 150, 250 and every 250 features thereafter up to 20,000—each of these 
ranked feature sets were later passed to the elastic net regression stage for further feature selection). These 
line plots can be assessed to identify potentially useful feature subset sizes e.g., at error minima. The five 
other feature-selection methods (points on the graph) are those which yield a single feature subset, either 
by being given a specified threshold value (such as for F-tests with FDR) or being the result of an embedded 
method (gradient boosting and the baseline model (elastic net)). The number of features shown for these five 
methods represents the final feature set size after application of elastic net regression. The dotted horizontal 
line represents the baseline performance
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Given that Pearson’s correlation indicates how strongly two variables are linearly 
related, two methods that stand out as performing well relative to the others are the 
two F-tests with FDR control—exhibiting higher Pearson’s correlation (r > 0.3) between 
actual and predicted TL (Fig.  3). Interestingly, hypothesis testing with FDR control is 
known to be a popular method in DNA methylation-based age estimation studies. Again, 
the application of principal component analysis before the elastic net regression stage 
yields a relatively good result (r ≈ 0.3). It is notable that the baseline method of elastic 
net regression without any prior feature-selection stage performs poorly in this analysis 
(r < 0.2), suggesting that a feature-selection stage in advance of elastic net regression is 
beneficial and should be explored as part of the estimator discovery process. When seek-
ing an optimal DNA methylation-based estimator, the methods and algorithms used to 
develop this will naturally vary due to the heterogeneity and diversity of datasets—cur-
rently most DNA methylation datasets are too small and not sufficiently representative 
to yield a general-purpose estimator. This highlights the importance of a robust develop-
ment methodology, as presented here, in the pursuit of a DNA methylation-based esti-
mator of traits.

The average number of features remaining after both the initial feature selection/trans-
formation and elastic net regression stages for the models constructed using nested CV 
is shown in Table 4. Additionally, the bar charts in Figs. 4 and 5 show the extent of the 
feature reduction process for each of the tested models. The left y-axes scales are loga-
rithmic due to the large differences in features shown. Consider an example, the Pearson 
correlation-based feature-selection model was trained with the top ranked 750 features. 

Fig. 3  Comparison of the 9 developed feature-selection models and DNAmTL using the Pearson correlation 
between predicted and actual TL for the 5 × 3 nested CV analysis. The line model plots can be assessed 
to identify potentially useful feature subset sizes e.g., at correlation maxima. The dotted horizontal line 
represents the baseline model (elastic net with no prior feature selection)
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Table 4  Features remaining in models after both feature-selection stages for the nested CV analysis 
(Stage 1)

As described in “Feature-selection methods” Section, the optimal number of features for the four ranking feature-selection 
methods (Pearson correlation, mutual information, linear SVR and random forest) were selected from analysis of Figs. 2 
and 3. For example, the minimum MAE corresponded to passing 3250 features from the random forest feature ranking 
to the elastic net regression stage, resulting in an average of 406 features being selected. The figures denote the average 
(rounded) from the five training sets of the nested CV process described in “Modelling overview”. Values in parentheses 
denote the standard error of the mean. *denotes principal components

Models developed using nested CV Average features remaining 
after initial feature- selection 
stage

Average features remaining 
after elastic net stage (Std. 
Error)

Baseline (Elastic net) – 30 (16.3)

F-test (FDR: 0.01)/Elastic net 23,685 4637 (283.5)

F-test (FDR: 0.05)/Elastic net 55,750 6398 (672.2)

Gradient Boosting/Elastic net 584 264 (8.7)

Pearson Correlation/Elastic net 750 68 (22.1)

Mutual Information/Elastic net 6500 394 (109.6)

Linear SVR/Elastic net 8500 4453 (12.6)

Random Forest Regression/Elastic net 3250 406 (10.6)

PCA/elastic net 1072* 41(9.5)*

Fig. 4  Number of features selected for each model at initial feature-selection stage and elastic net stage. 
The left axis denotes the number of features (logarithm scaled) with the right axis showing the MAE for 
each model. The left y-axis refers to the blue and orange bars while the right y-axis corresponds to the red 
x-shaped markers. The model that utilised PCA in advance of elastic net (to the right of the vertical black line) 
is shown apart, as PCA is technically a feature transformation method and, as such, the feature count refers to 
the number of principal components (transformed features). The number of features shown for those models 
that utilise explicit feature rankings (mutual information, Pearson’s correlation, linear SVR and random forest) 
pertain, in each case, to the optimal model from all models tested with ranked feature sets in defined steps 
between 50 and 20,000 (as specified in “Feature-selection methods” Section)
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The decision to use 750 features was based on observation of minima and peaks in 
Figs. 2 and 3 respectively from the nested CV analysis stage i.e., we effectively chose the 
best model from the models tested over the range 50–20,000 Pearson correlation ranked 
features as described in “Feature-selection methods” Section. In Fig. 4, for the Pearson 
correlation model, the blue bar indicates the 750 features retained after the initial fea-
ture-selection stage, with the adjacent orange bar indicating that approximately 70 fea-
tures remain after application of the elastic net regression algorithm to the 750-feature 
data set.

It is notable that the baseline model drastically reduces the initial 417,690 features 
down to approximately 30 features (i.e., the average number of features that remained 
in the models constructed from the 5 training sets of the nested CV process). As with 
Figs. 4 and 5 shows the same feature reduction information, however, the right y-axis 
denotes the Pearson correlation between predicted and actual TL. In general, based on 
this metric, models that retained relatively lower numbers of features yielded the lowest 
correlation scores.

To investigate how the number of features presented to the elastic net algorithm relates 
to the number of features selected by it, we plot this relationship over successively larger 
feature set sizes for each of the 4 models that utilise explicit feature rankings (Fig. 6). 
Interestingly, models that utilise feature rankings derived from the linear SVR and ran-
dom forest learning algorithms show an essentially monotonically increasing pattern i.e., 
in general as the number of features input to the elastic net algorithm increases, so too 

Fig. 5  Number of features selected for each model at initial feature-selection stage and elastic net stage. 
The left axis denotes the number of features (logarithm scaled) with the right axis showing the Pearson 
correlation between predicted and actual TL for each model. The left y-axis refers to the blue and orange bars 
while the right y-axis corresponds to the red x-shaped markers
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does the number of features selected by it. In contrast, the Pearson correlation-based 
and mutual information-based methods display significant fluctuations in the number of 
features retained by the elastic net algorithm.

In the case of Pearson correlation, feature subsets of similar size (containing pre-
dominantly the same ranked features) passed to the elastic net algorithm can, in some 
cases, result in substantially different feature set sizes being selected by the elastic net 
algorithm. The radically different behaviour of the four feature-selection methods and 
the fluctuating interplay of feature-selection method and regression algorithm further 
underscores the importance of exploring a range of methods and applying a robust 
methodology when developing a DNA methylation-based estimator.

Validation on EXTEND and TWIN independent data

Estimators, constructed on the full Dunedin data set, were comprised of specific sets 
of features after training. These estimators were tested on the 2 independent validation 
cohorts. Analogous to Table 4, the number of features remaining after both any initial 
feature-selection stage and the elastic net stage is shown in Table 5.

Next, the constructed estimators were tested on both the EXTEND and TWIN data 
sets. Table 6 denotes the performance measures (MAE, MAPE and Pearson correlation 
coefficient between predicted and actual TL) of the 9 investigated models, indicating 
their ability to predict TL in both validation data sets.

For the EXTEND data set, the model that applies PCA in advance of elastic net 
regression (PCA-EN TL) achieves the lowest MAE and MAPE, and the highest cor-
relation between predicted and actual TL. Interestingly, PCA-EN TL was also shown 
to perform well in the nested CV analysis where models were trained and tested on 

Fig. 6  The graph outlines the change in the number of features retained by the elastic net regression 
algorithm as a function of the input feature set size for the four feature-selection methods that yield explicit 
feature rankings
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the Dunedin data set. In this case, the model achieved the lowest MAE (Fig. 2) and a 
relatively high correlation score (Fig. 3). Contrastingly, the baseline model (elastic net 
regression with no prior feature-selection) performed less well in general on the data 

Table 5  Features remaining after both feature-selection stages for models in the Stage 2 analysis

Note that there is no initial feature-selection stage for the baseline model. *for PCA with elastic net, the number of principal 
components is shown, as PCA does not return a set of explicit features

Model Features remaining after initial 
feature-selection stage

Features remaining 
after elastic net stage

Baseline (elastic net) – 832

F-test (FDR: 0.01)/elastic net 14,453 3893

F-test (FDR: 0.05)/elastic net 34,365 5448

Gradient boosting/elastic net 614 446

Pearson correlation/elastic net 750 251

Mutual information/elastic net 6500 407

Linear SVR/elastic net 8500 4945

Random forest Regression/elastic net 3250 1059

PCA/elastic net 1349* 111*

Table 6  Performance scores for models constructed on the Dunedin data and tested on validation 
data sets

Metrics include MAE, MAPE and Pearson correlation (predicted and actual TL). Confidence intervals are shown for 
correlations. The number of features in each estimator is also shown. The estimator Baseline refers to the model that utilised 
elastic net regression with no prior feature-selection stage. Estimator names denote the feature-selection method and the 
regression algorithm used e.g., F-test-0.01-EN TL refers to the F-test feature-selection stage with FDR of 0.01, followed by 
application of elastic net. *denotes principal components. Values in bold text relate to a selection of the best models

Estimator Feature- 
selection 
method

Features in 
estimator 
(CpGs) EXTEND TWIN

MAE MAPE Correlation 
[CI 83.4%]

MAE MAPE Correlation [CI 
83.4%]

Baseline None 832 0.550 38.31 0.166 0.711 114.50 0.070

PCA-EN TL PCA 111* 0.570 39.37 0.295
[0.201, 
0.384]

0.718 112.46 0.074
[− 0.031, 0.177]

F-test-0.01-EN 
TL

F-test (0.01) 3893 0.614 42.93 − 0.003
[− 0.103, 
0.097]

0.728 106.52 0.119
[0.015, 0.221]

F-test-0.05-EN 
TL

F-test (0.05) 5448 0.626 43.35 0.07
[− 0.031, 
0.169]

0.752 102.35 0.092
[− 0.012, 0.194]

r-EN TL Pearson’s R 251 0.599 41.31 0.136
[0.036, 0.233]

0.718 116.93 − 0.102
[− 0.204, 0.002]

Boost-EN TL Gradient 
Boosting

446 0.601 41.39 0.085
[− 0.016, 
0.184]

0.725 114.49 0.052
[− 0.053, 0.155]

MI-EN TL Mutual Infor-
mation

407 0.640 43.51 0.203
[0.105, 
0.297]

0.753 107.83 − 0.067
[− 0.17, 0.038]

LSVR-EN TL Linear SVR 4945 0.620 43.13 0.114
[0.014, 0.212]

0.760 108.37 0.006
[− 0.098, 0.11]

RF-EN TL Random 
Forest

1059 0.615 41.83 0.135
[0.035, 0.232]

0.762 106.23 0.044
[− 0.061, 0.148]
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sets utilised in our study. On the EXTEND and TWIN independent validation sets, 
the model achieves the third and fourth best correlations respectively (between pre-
dicted and actual TL). The baseline model performed particularly poorly in the nested 
CV analysis—Fig. 2 shows that it is among the worst performers in terms of the MAE 
score, while the model’s estimated TL are the least correlated with actual values 
(Fig. 3). Other notable results include the model that utilised mutual information in 
advance of elastic net regression (MI-EN TL). This model achieved a correlation of 
0.203 between the predicted and actual TL, although the model was seen to perform 
poorly on the TWIN data set, reporting a small negative correlation (r = − 0.067). Of 
note, no models performed particularly well on the TWIN data.

The use of filter feature-selection techniques in advance of applying elastic net has 
the disadvantage that user intervention is necessary in most cases. For example, with 
an F-test, the false discovery rate must be specified, while for the methods that yield 
explicit feature rankings, the user must explore models with varying feature set sizes 
to ascertain which model may be optimal. A key aspect of the methodology adopted 
in our study is that the data used to test performance has not been used for feature-
selection—training and testing data must be independent to avoid information leak-
age from test data into training sets [79].

In contrast, a benefit of utilising embedded methods like elastic net and the gra-
dient boosting implementation used in this study (both without any prior feature-
selection step) is that they automatically yield a reduced feature set—which adds to 
their attractiveness as options. It is important to note that while PCA with elastic 
net yields the overall best estimator from our tested candidates, the nature of PCA 
precludes explicit selection of features, yielding instead transformed features that are 
linear combinations of original features (CpGs). As such, PCA is not commonly used 
as an initial feature reduction step when developing DNA methylation-based signa-
tures. This limitation, however, is mitigated if the primary motivation for developing 
an estimator is for predictive purposes where, based on the results of our study, PCA 
has the potential to yield better estimates of TL than its competitors. A recent study 
on epigenetic clocks, a widely used aging biomarker derived from DNA methylation 
data, found that CpG measures can be unreliable due to technical noise. The authors 
applied PCA in advance of elastic net regression, minimising random noise from 
CpGs and extracting shared systematic variation in DNA methylation. Technical vari-
ance was reduced while preserving relevant biological variance, with the PC-based 
clocks achieving equivalent or improved prediction of outcomes [30].

Beyond DNA methylation-based estimators of chronological age and TL, studies 
utilise DNA-methylation data for purposes such as classification of cancer and other 
diseases [42, 43, 71, 80–82]. Some studies utilise a single feature-selection technique, 
while others combine several approaches. Taken together, the robust methodology of 
comparing and evaluating a range of feature selection and reduction techniques, as 
demonstrated in our study, could serve to potentially enhance the efficacy and value 
of DNA methylation-based classifiers and estimators.
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Feature‑selection with other regression algorithms for estimator development

In addition to elastic net, several other regression algorithms were explored with an 
initial feature-selection stage. We chose the feature-selection approaches with the 
best correlation between predicted and actual TL from the validation analysis for both 
the EXTEND and TWIN data sets for comparison. These were mutual information 
(r = 0.203) and F-test (0.01 FDR) (r = 0.119) respectively (Table 6). Although the estima-
tor that utilised PCA achieved a better correlation (r = 0.295) on the EXTEND data, PCA 
is not strictly a feature-selection method but rather transforms the original variables into 
new orthogonal variables. The results of estimators utilising other regression algorithms 
can be seen in Table 7. Notable results include that the estimator MI-SVR TL obtained a 
similar correlation between predicted and actual TL (r = 0.181) as the MI-EN TL model 
(Table  6) and that the MI-PLS TL estimator achieves the best MAE and MAPE of all 
tested estimators on the EXTEND data but a relatively low correlation. However, none 
of the models that used alternative regression approaches achieved a higher correlation 
than MI-EN TL for the EXTEND data.

Comparison with previously developed DNAmTL estimator

The novel 140-CpG DNA methylation-based TL estimator described previously by Lu 
et al. [34], (DNAmTL), is compared with the range of estimators developed in our study. 
We utilised both validation sets (EXTEND and TWIN) for this purpose. Predictions 
(estimates) from each estimator were assessed via their correlation with the actual values 
of TL in both data sets (Table 6)—an analogous correlation analysis was conducted in 
[34, 78]. For the EXTEND and TWIN data sets, a comparison of some of our best per-
forming TL estimators and the DNAmTL estimator of Lu et al. [34] is shown in Figs. 7 
and 8. Regarding the EXTEND data, the estimator which uses PCA in advance of elastic 
net regression (PCA-EN TL) achieves the highest correlation coefficient between pre-
dicted and actual TL (0.295 (83.4% CI [0.201, 0.384])). The next highest correlation (of 
our developed models) was achieved by the mutual information with elastic net estima-
tor (MI-EN TL), with a correlation of 0.203 (83.4% CI [0.105, 0.297]). Comparing with 

Table 7  Performance scores for models constructed on Dunedin data and tested on EXTEND and 
TWIN data

Metrics include MAE, MAPE and Pearson correlation between predicted and actual TL. These estimators utilise mutual 
information as the initial feature-selection stage for the EXTEND and TWIN data—followed by an array of varying regression 
algorithms. For comparison the performances of MI-EN TL and F-test-0.01-EN TL are included for the EXTEND and TWIN 
cases respectively

Data set Estimator Regression algorithm MAE MAPE Correlation

EXTEND MI-EN TL Elastic Net Regression 0.640 43.51 0.203

MI-LARS TL Least Angle Regression 0.627 42.64 − 0.012

MI-PLS TL Partial Least Squares Regression 0.447 34.12 0.076

MI-SVR TL Support Vector Regression 0.675 46.06 0.181

MI-MLP TL Multi-layer Perceptron 0.637 43.21 0.111

TWIN F-test-0.01-EN TL Elastic Net Regression 0.728 106.52 0.119

MI-LARS TL Least Angle Regression 0.746 107.55 0.055

MI-PLS TL Partial Least Squares Regression 0.678 135.28 − 0.141

MI-SVR TL Support Vector Regression 0.780 106.85 − 0.110

MI-MLP TL Multi-layer Perceptron 0.742 108.84 0.106
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the DNAmTL estimator of Lu et al. [34], this achieved a correlation of 0.216 (83.4% CI 
[0.118, 0.310]) (114 of the 140 DNAmTL CpG measures were available in EXTEND).

There is considerable variation observed in the correlations reported across the esti-
mators (Table  6), suggesting that the choice of feature-selection method is important, 
given the specific nature of individual data sets. From observation of Fig. 7 (relating to 
the EXTEND cohort), the PCA-EN TL estimator’s 83.4% confidence interval does not 
overlap with either Boost-EN TL or F-test-0.05-EN TL—thus indicating a statistically 
significant difference in the correlation coefficients at the 5% level of significance [73, 
83]. There is a marginal overlap between PCA-EN TL and LSVR-EN TL and relatively 
modest overlaps between PCA-EN TL and both the RF-EN TL and r-EN TL estima-
tors. Where there is overlap in confidence intervals, results should be interpreted with 
caution.

Of note, the confidence interval for DNAmTL overlaps with all compared estimators 
in Fig. 7 while, as stated above, several estimators share no or a marginal overlap with 
PCA-EN TL—supporting the inference that PCA-EN TL performs best on this data set. 

Fig. 7  Correlation coefficients between estimated and actual TL for a range of the best performing TL 
estimators on the EXTEND data set. 83.4% confidence intervals are shown [73]

Fig. 8  Correlation coefficients between estimated and actual TL for a range of the best performing TL 
estimators on the TWIN data set. 83.4% confidence intervals are shown [73]
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Figure  8 outlines the correlations between predicted and actual TL for a range of the 
investigated estimators on the TWIN cohort, with a marked decline evident in estimator 
performance for both our set of developed models and DNAmTL. The wide confidence 
intervals suggest that the sample sizes of test sets (n = 192 and n = 178 for EXTEND and 
TWIN respectively) may be sub-optimal for assessing differences, therefore apparent 
trends where intervals overlap should be considered tentatively [84, 85].

Previously, the DNAmTL estimator developed by Lu et al. [34] was tested on a range 
of independent data sets. Four of these data sets contained TL measured using the gold 
standard Southern blot telomere restriction fragment method (TRF), with the DNAmTL 
estimator achieving correlations ranging r = 0.41–0.5. However, on 3 data sets with 
quantitative polymerase chain reaction (qPCR) TL measures (i.e., similar to the TL 
measurement method used in our study), the correlations were observed to be variable 
(r = − 0.01, 0.08 and 0.38). On applying the DNAmTL estimator to the Dunedin data set, 
a correlation of 0.242 (83.4% CI [0.209, 0.274]) between predicted and actual TL values 
was found (with 115 of 140 DNAmTL CpGs available in Dunedin data). Additionally, the 
DNAmTL estimator achieves correlations of 0.216 (83.4% CI [0.118, 0.310]) and 0.092 
(83.4% CI [− 0.012, 0.194]) on the EXTEND and TWIN data sets respectively.

The observed differences in the correlations between predicted and actual TL for TRF 
and qPCR data, and the substantial variation in the case of qPCR may be due to known 
lab-to-lab variation of qPCR TL assays and/or be due to assay reproducibility [78]. The 
qPCR method is frequently used to measure TL due to its high-throughput and small 
DNA requirements; however, due to its sensitivity to pre-analytic factors such as DNA 
extraction or storage, its reliability is limited [86]. This suggests that utilising qPCR-
based TL as a ground truth may not lead to as accurate or generalisable a DNA methyla-
tion-based TL estimator. As a measure of external validity, we assessed the correlation of 
TL across both time points in the Dunedin data (i.e., between individuals at ages 26 and 
38) for both the actual measured TL and our best developed estimator PCA-EN TL. The 
correlations were observed to be 0.669 (p = 6.83e−97) and 0.261 (p = 5.58e−13) respec-
tively. The strong correlation of the actual TL across time points supports the expecta-
tion that TL shows a high degree of intra-individual consistency over time [87–90].

On the whole, performance of the estimators was substantially lower when tested on 
the TWIN data set with the estimator that applied the F-test (0.01 FDR) in conjunction 
with elastic net achieving the highest correlation (r = 0.119 (83.4% CI [0.015, 0.221])) 
between predicted and actual TL. Comparatively, the DNAmTL estimator yielded a cor-
relation of 0.092 (83.4% CI [− 0.012, 0.194]) on the TWIN data set, with all 140 CpG 
sites being available for use in the estimator. TL is highly heritable [91–96], therefore it 
would typically be expected to see strong correlations between TL in twin pairs. To fur-
ther validate the TWIN data set, the correlations for actual TL, MI-EN TL, PCA-EN TL 
and DNAmTL across twin pairs were assessed and found to be 0.384 (83.4% CI [0.254, 
0.5], p = 2.87e−04), 0.856 (83.4% CI [0.812, 0.890], p = 1.62e−25), 0.828 (83.4% CI 
[0.777, 0.869], p = 1.53e−22) and 0.823 (83.4% CI [0.769, 0.866], p = 4.03e−22) respec-
tively. These results support the reliability of our DNA methylation-based TL estimators.

We compared the features selected by Lu et  al.’s DNAmTL estimator [34] and our 
MI-EN TL estimator, both of which yielded relatively small feature sets (140 and 407 
features respectively). Only two features (CpGs) were found to be common to both 



Page 22 of 30Doherty et al. BMC Bioinformatics          (2023) 24:178 

estimators. This highlights the challenge of finding a DNA methylation-based estimator 
that would generalise well on all data sets. Theoretically, to acquire such a level of gener-
alisation, one would require very large data sets, which at the present time are difficult to 
obtain. However, in the future, aggregation of data sources may be possible which could 
yield a highly generalisable estimator, wherein applying a robust methodology such as 
that demonstrated in this paper, should further enhance the ultimate estimator.

Recently, Higgins Chen et al. [30] developed principal components-based epigenetic 
estimators of aging by first reducing the feature set to 78,464 CpGs present in a wide 
range of DNA methylation data sets. The authors implemented PCA with centering 
but not scaling of the beta values and excluded the final PC before applying elastic net 
regression. Guided by their methods and available codebase (https://​github.​com/​Morga​
nLevi​neLab/​PC-​Clocks), we applied this approach to our Dunedin training data set 
(using 76,567/78,464 CpGs present in our data) to construct a new estimator and tested 
it on both our independent data sets. The new estimator achieved Pearson correlations 
between predicted and actual TL of 0.194 and − 0.007 for the EXTEND and TWIN data 
sets respectively. Comparatively, our PCA-based estimator (PCA-EN TL) achieved cor-
relations of 0.295 and 0.074 respectively. A primary focus of the  Higgins-Chen et  al. 
[30] study was reliability and replicability of epigenetic signatures. Possibly, moderate 
stronger correlations were attained by our PCA-EN TL estimator in our datasets as PCA 
was applied to the entire CpG feature set without initial filtering, thus allowing summa-
risation of all information.

Correlation of actual TL and estimators MI‑EN TL and PCA‑EN TL

Plots of actual TL versus two of our best performing DNA methylation-based estimators 
(MI-EN TL and PCA-EN-TL) are shown in Fig. 9 for the Dunedin, EXTEND and TWIN 
data sets. As expected, higher correlations are observed when the estimators are applied 
to the Dunedin training data (r = 0.487 and r = 0.498) with the highest correlation in 
the validation cohorts given by the PCA-EN TL estimator applied to the EXTEND data 
(r = 0.295).

Predicted TL from MI‑EN TL and PCA‑EN TL estimators more strongly correlated with age 

than TL

In the EXTEND validation data set MI-EN TL and PCA-EN TL showed stronger nega-
tive correlations with chronological age (r = − 0.506 (83.4% CI [− 0.577, − 0.427]) and 
r = − 0.565 (83.4% CI [− 0.63, − 0.493]) respectively) than did actual TL (r = − 0.218 
(83.4% CI [− 0.312, − 0.12])), as shown in Additional file  1: Figure S1. Comparatively 
for the TWIN data, both MI-EN TL and PCA-EN TL showed similar negative corre-
lations with chronological age (r = − 0.512 (83.4% CI [− 0.585, − 0.431], p = 1.33e−07) 
and r = − 0.520 (83.4% CI [− 0.592, − 0.44], p = 7.9e−08) respectively), in comparison to 
a slight positive correlation between chronological age and actual TL (r = 0.128, 83.4% 
CI [0.024, 0.229], p = 0.219). Considering the Lu et al. estimator’s TL predictions, these 
were shown to have correlations of − 0.7 (83.4% CI [− 0.748, − 0.645], p = 1.28e−29) and 
− 0.692 (83.4% CI [− 0.743, − 0.633], p = 1.1e−14) with age in the EXTEND and TWIN 
data sets respectively. Additional file 1: Figure S1 compares the correlations in both data 
sets for each TL measure. Next, a multiple regression model was constructed using the 

https://github.com/MorganLevineLab/PC-Clocks
https://github.com/MorganLevineLab/PC-Clocks
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EXTEND data to explore the relationship between age and TL. Our analysis showed that 
the MI-EN TL, PCA-EN TL and DNAmTL estimators, were associated with much more 
significant p-values (p = 8.49e−14, p = 6.91e−17 and p = 4.64e−29 respectively) than 
actual relative TL (p = 2.83e−03), after adjusting for sex, current smoking status and 
other confounders (Additional file 1: Table S1). Our findings are consistent with the Lu 
et al. [34] study, where their DNAmTL estimator was observed to achieve more signifi-
cant associations with age than actual TL did with age.

Previously, an epigenetic clock, DNAmAge, was developed [5] in the form of a multi-
tissue predictor of age that utilises DNA methylation data. We examined age accel-
eration, generated by regressing DNAmAge on age, and plotted it against actual and 
estimated TL for comparison (Additional file 1: Figure S2). We observed no correlation 
(r = − 0.029, p = 0.69) between actual TL and the age acceleration measure in EXTEND 
data, as shown previously ([50, 97–99]). Stronger, but small, negative correlations were 
observed between age acceleration and both our TL estimators MI-EN TL (r = − 0.143, 

Fig. 9  Measured relative TL versus MI-EN TL/PCA-EN TL in training and test datasets. Scatter plots of DNA 
methylation-based telomere length (MI-EN TL/PCA-EN TL, x-axis) versus TL measured by qPCR (y-axis). A 
Dunedin training data (MI-EN-TL). B Dunedin training data (PCA-EN-TL). C Test data (EXTEND) with MI-EN TL. 
D Test data (EXTEND) with PCA-EN TL. E Test data (TWIN) with MI-EN TL. F Test data (TWIN) with PCA-EN TL. 
As evidenced in other TL estimation studies [34, 78], it is notable that our estimators yield a more restrictive 
range of TL values relative to actual TL. Each panel includes a Pearson correlation coefficient and correlation 
test p-value
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p = 0.048) and PCA-EN TL (r = − 0.161, p = 0.026). Similarly, Lu et  al. [34] reported a 
Pearson correlation of r = − 0.2 between the DNAmAge age acceleration measure and 
their age-adjusted TL estimator, DNAmLTLadjAge.

Effect of sex

Previously studies have shown that women have longer TL than men, when consider-
ing groups of the same age [100]. All three of the multiple regression models outlined in 
Additional file 1: Table S1 in the supplementary information indicate that age-adjusted 
relative TL, age-adjusted MI-EN relative TL and age-adjusted PCA-EN relative TL 
were longer for women than men. The p-value for age-adjusted relative TL (p = 0.045, 
n = 192) was much less significant than those for age-adjusted MI-EN relative TL and 
age-adjusted PCA-EN relative TL (p = 3.61e−07 and p = 1.18e−03 respectively). Com-
paratively, Lu et al. [34] reported that age-adjusted TL and age-adjusted DNAmTL were 
longer in females than males with the p-value for age-adjusted LTL (p = 2.15E−04) being 
much less significant than that for age-adjusted DNAmTL (p = 1.14E−15).

MI‑EN TL and PCA‑EN TL association with imputed blood cell composition

The following imputed blood cell counts were analysed for the validation cohort 
EXTEND (B cells, naïve CD4+ T, naïve CD8+ T, exhausted cytotoxic CD8+ T cells 
(CD8 positive, CD28 negative, CD45R negative), plasma blasts, natural killer (NK) cells, 
monocytes, and granulocytes). The blood cell composition imputation of B cell, NK 
cells, monocytes and granulocytes were imputed using the Houseman method [101], 
while remaining cells were imputed based on the Horvath method [102] as described 
previously [50].

The abundance of naïve CD8+ T cells and memory CD8+ T cells has previously 
been shown to correlate with actual TL [103], and a previously developed estima-
tor (DNAmTL) was found to be significantly correlated with several imputed meas-
ures of leucocytes e.g. naïve CD8+ T cells (r = 0.42, p = 2.2E−151) [34]. We found 
similar correlations for naïve CD8+ T cells in the EXTEND cohort (r = 0.395, 83.4% 
CI [0.307, 0.477], p = 1.5E−08, r = 0.268, 83.4% CI [0.172, 0.359], p = 1.8E−04 
and r = 0.465, 83.4% CI [0.382, 0.54], p = 1.1E−11) for PCA-EN TL, MI-EN TL 
and DNAmTL respectively. Additionally, MI-EN TL was significantly correlated 
with several other imputed blood cell measures i.e., CD8pCD28nCD45RAn cells 
(r = − 0.171, 83.4% CI [− 0.267, − 0.072], p = 1.8E−02), CD4T cells (r = 0.191, 83.4% 
CI [0.092, 0.286], p = 8.1E−03) and natural killer cells (r = − 0.16, 83.4% CI [− 0.256, 
− 0.061], p = 2.7E−02). Similarly, PCA-EN TL was significantly correlated with 
CD8pCD28nCD45RAn cells (r = − 0.16, 83.4% CI [− 0.256, − 0.061], p = 2.6E−02), 
plasma blasts (r = 0.196, 83.4% CI [0.098, 0.291], p = 6.6E−03), natural killer cells 
(r = − 0.159, 83.4% CI [− 0.255, − 0.06], p = 2.7E−02), monocytes (r = − 0.207, 83.4% 
CI [− 0.301, − 0.109], p = 4.0E−03) and granulocytes (r = 0.26, 83.4% CI [0.164, 
0.351], p = 2.7E−04). Lu et  al. DNAmTL [34] was found to be significantly corre-
lated with CD4+ T cells (r = 0.313, 83.4% CI [0.219, 0.401], p = 9.6E−06), CD4T cells 
(r = 0.314, 83.4% CI [0.221, 0.402], p = 9.4E−06), natural killer cells (r = − 0.17, 83.4% 
CI [0.071, 0.266], p = 1.9E−02), CD8pCD28nCD45RAn cells (r = − 0.213, 83.4% 
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CI [− 0.307, − 0.115], p = 3.0E−03) and monocytes (r = − 0.214, 83.4% CI [− 0.308, 
− 0.116], p = 2.8E-03).

A range of strong correlations were observed in the TWIN data set between vari-
ous TL measures (not adjusted for age) and blood cell concentrations. These included 
actual TL, MI-EN TL, PCA-EN TL and DNAmTL being significantly correlated with 
CD8.naive cells with correlations of 0.169 (83.4% CI [0.066, 0.269], p = 2.43E−02), 
0.456 (83.4% CI [0.369, 0.535], p = 1.65E−10), 0.617 (83.4% CI [0.548, 0.678], 
p = 4.48E−20) and 0.685 (83.4% CI [0.625, 0.737], p = 5.47E−26) respectively. Addi-
tionally, CD4T cells were significantly correlated with MI-EN TL (r = 0.384, 83.4% 
CI [0.291, 0.47], p = 1.26E−07), PCA-EN TL (r = 0.456, 83.4% CI [0.369, 0.535], 
p = 1.6E−10) and DNAmTL (r = 0.457, 83.4% CI [0.37, 0.536], 1.44E−10). MI-EN TL, 
PCA-EN TL and DNAmTL generally exhibited considerably stronger correlations 
with imputed blood cell composition than actual TL—further details can be viewed in 
the Supplementary Information (Additional file 1: Tables S2, S3, S4 and S5).

MI‑EN TL and PCA‑EN TL association with actual blood cell composition in Dunedin cohort

Actual blood cell counts (as opposed to imputed) were available for the Dunedin 
study. Moderate negative correlations were observed for basophil count, with the 
estimated telomere lengths from MI-EN TL and PCA-EN TL achieving the highest 
correlations (r = − 0.41, p = 1.8E−05 and r = − 0.38, p = 6.7E−05 respectively), com-
pared to r = − 0.24 (p = 0.014) for the actual TL. In the case of eosinophils, actual TL 
showed similar negative correlation (r = − 0.15, p = 9.3E−5) to both PCA-EN TL and 
MI-EN TL (r = − 0.19, p = 3.6E−07 and r = − 0.10, p = 1.2E−02 respectively).

There was a significant small correlation of r = − 0.09 (p = 0.013) between actual 
monocyte count and measured TL for the Dunedin data, while stronger and more 
significant negative correlations were observed with both MI-EN TL and PCA-EN TL 
(r = − 0.15, p = 5.4E−05 and r = − 0.16, p = 3.1E−05). Imputed monocyte blood cell 
counts are available for the EXTEND cohort for comparison. Lower correlations may 
be expected in this case as correlations generated for actual blood cell counts in the 
Dunedin data involve TL estimates from models trained on the Dunedin data itself. 
Of the correlations between imputed monocyte count and actual TL, MI-EN TL and 
PCA-EN TL, PCA-EN TL showed the strongest correlation (r = − 0.21, p = 4.0E−03) 
with imputed monocyte count. Additional file  1: Figure S3 shows plots of mono-
cyte counts versus actual TL, MI-EN TL and PCA-EN TL for both the Dunedin and 
EXTEND data sets. Blood cell composition correlation details for EXTEND, TWIN 
and Dunedin data can be viewed in Additional file 1: Tables S2, S3, S4, S5 and S6.

It is interesting to note that despite the Lu et al. DNAmTL estimator [34] and our 
MI-EN TL estimator having only two features in common, they are both shown to 
correlate with many of the same biological entities i.e., blood cell composition, age 
and sex. This suggests that our developed estimators may have captured these biologi-
cal properties by finding features (CpGs) that identify them best in our data, whereas 
a predominantly different signature may achieve this in another data set.
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Conclusions
In summary, we have outlined a robust methodology that utilises feature-selection 
approaches and ML algorithms in the development of a DNA methylation-based TL 
estimator. We have shown through results on independent data that differences in the 
efficacy of developed estimators exist, primarily due to the inherently varying combina-
tion of methods and algorithms with relatively small heterogenous data sets. Consistent 
with research in ML and deep learning, as greater volumes of high quality representative 
big data become available, it will be possible to develop more robust and accurate esti-
mators of biological traits, such as TL, that generalise well to new unseen data. Interest-
ingly, different estimators with extensively different feature sets, correlate with many of 
the same biological properties, which suggests that an estimator has a choice of CpGs 
with which to represent traits.

An interesting outcome of our work is that PCA, a technique not traditionally used 
for feature reduction of high dimensional data in DNA methylation studies, performs 
well in comparison to a range of more typically utilised approaches. This suggests that 
it may have utility in the development of DNA methylation-based estimators or clas-
sifiers where prediction is paramount, with identification of underlying features (CpG 
sites) not of primary interest. Such estimators, however, may have less clinical utility for 
the development of DNA methylation-based biomarkers of disease. Furthermore, the 
methodology adopted herein, that compares and assesses candidate estimators of TL, 
could easily be applied when developing estimators of other biological markers and dis-
ease phenotypes, to examine their relationship with DNA methylation and potentially 
improve their predictive value.
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