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Abstract 
Background: Epigenetic aging measures have promise as surrogate health outcomes in randomized control trials and observational cohort 
studies. The value of these measures, however, will reflect the extent to which they are associated with prospective health outcomes in real-
world medical settings.
Methods: Using data from 2 216 post-9/11 veterans from the VISN 6 MIRECC’s Post-Deployment Mental Health Study, we examined whether 
accelerated epigenetic aging, assessed by DunedinPACE, was associated with prospective chronic disease morbidity, predicted healthcare 
costs, and mortality over an average of 13.1 years of electronic health record follow-up.
Results: Veterans with faster DunedinPACE aging scores developed more chronic disease over the subsequent 5 years (RR, 1.25; 95% CI, 
1.14–1.36), 10 years (RR, 1.31; 95% CI, 1.21–1.40), and 15 years (RR, 1.36; 95% CI, 1.22–1.52). Faster aging scores were also associated with 
increases in predicted healthcare costs over the next 5 years (β = 0.08; 95% CI, 0.03–0.13), 10 years (β = 0.23, 95% CI, 0.15–0.31), and 15 years 
(β = 0.21; 95% CI, 0.11–0.30). Faster DunedinPACE aging scores were associated with greater risk for incident myocardial infarction (84%), 
stroke (38%), diabetes (56%), cancer (25%), liver disease (44%), and renal disease (34%), as well as greater risk of mortality due to all-causes 
(38%) and chronic disease (74%). These results remained when adjusting for demographic, biomarker, and smoking covariates.
Conclusions: Our findings suggest DunedinPACE is a biomarker of accelerated aging that is prospectively associated with chronic disease 
morbidity and mortality, as assessed using health records from an integrated healthcare system.
Keywords: Biological aging, Chronic disease, DNA methylation, Mortality, Veterans

Epigenetic measures of aging derived from DNA methylation 
(DNAm) developed over the last decade can assess biological 
aging using tissue samples collected at a single point in time 
(1–6). These new measures have the potential to allow for the 
identification of individuals with accelerated aging who could 
be targeted by geroprotective interventions. Slowing the rate 
at which individuals are aging—defined in the geroscience 
hypothesis as a common cause of chronic disease morbidity 

and mortality (7,8)—would be expected to improve health 
across many chronic disease pathways and organ systems 
(9–11). If epigenetic measures can index change in biological 
aging and are associated with prospective health, they would 
be invaluable surrogate health outcomes for randomized con-
trol trials testing interventions that aim to slow aging and 
improve health (12), as well as observational studies inves-
tigating health trajectories (13). With additional validation, 
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such measures also have the potential to serve as clinical bio-
markers of future health for use in clinical settings.

There is promising evidence that second- and third-
generation epigenetic measures of aging (1,2) are associated 
with future health (1,3,4,14,15), particularly third-generation 
measures developed using longitudinal biomarker data (1,15) 
(eg, DunedinPACE (2)). However, realizing the potential 
clinical and research value of epigenetic measures of aging 
requires evaluating whether these biomarkers are associated 
with prospective chronic disease morbidity and mortality in 
real-world medical settings (16). To do so, we integrated sur-
vey, epigenetic, and electronic health record (EHR) data from 
2 216 U.S. military veterans who served after September 11, 
2001 (17). The cohort was 37.4 years old at enrollment with 
an average follow-up of 13.1 years, which afforded an obser-
vation window spanning early adulthood into midlife and 
older age, periods that often include the onset of chronic 
disease (18).

Method
Participants and Study Design
Participants were enrolled in the VISN 6 Mid-Atlantic Mental 
Illness Research, Education, and Clinical Center’s (MIRECC’s) 
Post-Deployment Mental Health Study (PDMH) (17), a mul-
tisite study of veterans who served in the post-9/11 period. 
The Durham, Richmond, and Salisbury Veteran’s Affairs (VA) 
Medical Centers’ Institutional Review Boards approved the 
PDMH study protocol and all participants provided informed 
consent. The study included participants with DNAm and VA 
EHR data (Supplementary Figure 1), resulting in a sample of 
2 216 veterans followed for an average of 13.1 years (stan-
dard deviation, SD = 2.8; Supplementary Figure 2).

Measures
Genomic DNAm data generation and processing
Whole blood was collected during baseline assessments 
and analyzed using the Infinium HumanMethylation450 or 
MethylationEPIC Beadchip (Illumina Inc., San Diego, CA) to 
derive DNAm data (19,20). Internal replicates were included 
and checked for consistency using single nucleotide polymor-
phisms on each array. Quality control was performed using 
the minfi (21) and ChAMP (22) R packages (R Foundation 
for Statistical Computing, Vienna, Austria). Samples were 
excluded if average fluorescence signal intensity was below 2 
000 arbitrary units or < 50% of the mean intensity of all sam-
ples, > 10% of probes were not detectable (p value > .001), if 
a sex mismatch was detected, or if the sample was deemed an 
outlier on principal component analysis plots. In total, 134 
samples were removed due to quality control. Probe qual-
ity control and data normalization were performed within 
each batch using the R package wateRmelon (23). Probes 
not detected (detection p value > .001) in > 10% of samples 
and those hybridizing to multiple locations in the genome 
were removed. Raw beta values were normalized using the 
dasen approach (24) and batch and chip adjustments were 
completed using ComBat in the R package sva (25). Methyl-
ation values reflected the resulting normalized and adjusted 
beta values.

DunedinPACE. Epigenetic aging was assessed by applying the 
DunedinPACE algorithm to PDMH DNAm data to produce 
normalized DunedinPACE values (21,22,26). The algorithm 

(26) is derived from reliable CpG probes (25) and produces 
aging scores that represent years of biological aging per 
chronological year. Statistical tests used continuous Dunedin-
PACE scores unless otherwise noted (ie, aging quartiles were 
created for visualization and interpretation only).

Technical DNAm covariates. A dummy variable was cre-
ated to denote if DNAm data was generated using 450k or 
EPIC V1 chips. Estimated white blood cell counts (27) (T 
lymphocytes [CD4+ and CD8+], B cells [CD19+], monocytes 
[CD14+], NK cells [CD56+], and neutrophils) were derived 
using FlowSorted.Blood.450k and FlowSorted.Blood.EPIC 
packages and were used as covariates in all models (excluding 
neutrophils to avoid multicollinearity).

DNAm smoking. Lifetime exposure to tobacco smoke (28) 
was calculated for participants using a DNAm measure (29). 
These methylation smoking scores were moderately associ-
ated with self-reported smoking (r = 0.55, p < .001).

PC-based second-generation epigenetic clocks: PhenoAge and 
GrimAge. We derived 2 second-generation clocks derived 
from principle components (PC) generated using data from 
78 464 CpGs, PC-PhenoAge (30), and PC-GrimAge (3). The 
PC-based second-generation clocks provide improved reliabil-
ity for aging estimates (13) compared to the original Pheno-
Age and GrimAge algorithms (described in detail previously) 
(3,30). Principle components-based clock estimates were gen-
erated using established algorithms (12) and residualized on 
chronological age to provide a measure of age acceleration.

Electronic health record data
Prospective health outcomes and clinical biomarkers were 
derived using the VA EHR. Supplementary Method 1 pro-
vides a detailed description of EHR data processing. Veter-
ans enrolled in the PDMH from 2005 to 2016 (13), which 
resulted in follow-up periods ranging from 7.3 to 18.5 years 
(88–222 months). Electronic health record data coverage 
(Supplementary Table 1) was predominantly based on the 
timing of veterans’ baseline assessment (and resulting length 
of EHR follow-up). Baseline assessment year was not associ-
ated with DunedinPACE (Supplementary Figure 3).

Charlson Comorbidity Index. Charlson Comorbidity Index 
(31) (CCI) scores assessed chronic disease burden and were 
derived using diagnostic ICD-9 and ICD-10 codes (32) ascer-
tained from outpatient, inpatient, and purchased care data 
(ie, community care referrals from VA providers and/or paid 
by VA sources). Baseline values were calculated on the date 
of enrollment in the PDMH and were updated for each 
follow-up period. Charlson Comorbidity Index scores were 
used to calculate 10-year CCI-predicted mortality risk.

Nosos risk adjustment score. Nosos risk adjustment scores 
(33,34) represent predicted annual healthcare costs for VA 
patients based on the Centers for Medicare and Medicaid 
Hierarchical Condition Categories risk adjustment model. 
This algorithm was updated to include items specific to the 
VA, such as priority status and computed costs (34). Nosos 
scores are normalized to a mean of 1.0, such that greater 
values represent higher predicted patient costs (eg, a score of 
1.25 equals 25% higher predicted costs).

Chronic disease onset. Chronic disease onset for each of the 
disease categories in the CCI was ascertained at baseline, as 
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well as at follow-up to a censor date of December 31, 2023. 
Combined diagnosis data were used to create a measure of 
time to first chronic disease onset across categories.

Clinical biomarkers
Clinical biomarkers included body mass, blood pressure (BP), 
and heart rate (HR), which were selected based on their rou-
tine collection during VA clinical encounters. Body mass was 
calculated using the standard formula via height and weight. 
Blood pressure was assessed using systolic BP—diastolic BP 
was not included to avoid multicollinearity due to a high cor-
relation with systolic BP (r = .75, p < .001). Heart rate was 
assessed using pulse. All measures were assessed at baseline 
using a 2-year lookback period, producing data for over 75% 
of veterans who had clinical encounters with these biomark-
ers assessed (Supplementary Table 1).

Mortality
Dates of death and all-cause mortality status were ascer-

tained using the VA EHR. Months from PDMH baseline to date 
of death defined time to mortality to a censor date of January 
21, 2024. In total, 92 deaths were observed over the follow-up. 
National Death Index data included in the VA Mortality Data 
Repository (MDR) (35) provided primary cause of death, 
which was used to classify deaths as related to acute causes or 
chronic disease. A subset of recent deaths did not have a cause 
of death data (n = 22), as MDR data is currently censored to 
December 31, 2021 (32). Further excluding acute mortality 
events (n = 30; due to overdoses, accidents, death by suicide, 
infection, and homicide) left 40 deaths due to chronic diseases, 
largely cardiovascular diseases (n = 17), and cancer (n = 15).

Demographics
Participants reported their age, sex, race, ethnicity, years of 
education, and smoking status (coded: never smoker, 0; past 
smoker, 1; current smoker, 2). Sex, race, and ethnicity self-
reports were confirmed using sex chromosomes and ancestry 
from genetic data.

Data Analysis
We tested the association of DunedinPACE epigenetic aging 
scores with CCI and Nosos scores at baseline, then with 
change to 5-, 10-, and 15-year follow-ups. Models of 5-, 
10-, and 15-year change in CCI and Nosos scores controlled 
for baseline CCI and Nosos scores, respectively. Analyses of 
CCI scores used zero-inflated Poisson regression models to 
account for CCI distributions (see Supplementary Figure 4) 
and analyses of Nosos scores used linear regression models. 
We next tested the association between aging scores and 
incident onset of chronic diseases and mortality using Cox 
proportional-hazard models. Finally, we conducted 3 addi-
tional sets of analyses to complement the primary results: 
(a) stratifying by sex, then race and ethnicity, (b) moderat-
ing our primary models by methylation chip, and (c) pro-
viding results for 2 PC-based second-generation epigenetic 
measures of aging. For each set of models, we report esti-
mates controlling for demographic (age, sex, race and ethnic-
ity, and years of education) and DNAm technical covariates 
(chip type, white blood cell counts), then results controlling 
for clinical biomarkers (body mass, BP, HR), and 2 mea-
sures of smoking (self-reported smoking and DNAm-derived 
tobacco smoke exposure). Tables also include bivariate 
associations controlling for age. Poisson regression models 

used Monte Carlo simulation to account for missing data, 
linear regression models used full maximum likelihood esti-
mation (full results excluding any participants with missing 
data are reported in Supplementary Table 2), whereas Cox 
proportional-hazard models included only participants with 
full data. Cox proportional-hazard models also excluded 
individuals who had outcome conditions at baseline (eg, 
models predicting diabetes excluded veterans with diabetes 
at baseline). Inspection of Schoenfeld residual plots and esti-
mates of the interaction of time with aging scores suggest 
survival curves met the proportional hazard assumption. 
Models were run in MPLUS version 8.3 (36) using 2-tailed 
tests with an a priori significance level of 0.05 and all esti-
mates were scaled to 1 SD DunedinPACE aging score.

Results
The 2 216 veterans (472 women, 1 744 men) included 1 077 
non-Hispanic Black and 1 139 non-Hispanic White veterans, 
with a mean age of 37.4 years (SD = 10.1) at baseline.

Accelerated Aging and Chronic Disease Burden
Veterans with faster DunedinPACE aging scores had greater 
chronic disease burden at baseline (β, 0.23; 95% CI, 0.10–
0.35; p < .001). Veterans with faster aging scores developed 
greater chronic diseases burden over the subsequent 5 years 
(β, 0.22; 95% CI, 0.13–0.31; p < .001), 10 years (β, 0.24; 
95% CI, 0.16–0.31; p < .001), and 15 years (β, 0.31; 95% 
CI, 0.20–0.36; p < .001). These associations represented 25% 
(RR, 1.25; 95% CI, 14–36%), 27% (RR, 1.27; 95% CI, 
17–41%), and 36% (RR, 1.36; 95% CI, 95% CI, 22–52%) 
greater relative risk, respectively. Results remained when con-
trolling for clinical biomarkers and smoking measures (Table 
1). The size of the associations increased as follow-up periods 
increased in length. At the 5-, 10-, and 15-year follow-ups, 
the fastest-aging veterans had 0.41, 0.92, and 1.84 higher 
CCI scores than the slowest-aging veterans (Figure 1; Sup-
plementary Figure 5), corresponding to 5.3, 6.2, and 12.0 
times greater relative—and 1.3%, 4.7%, and 16.5% greater 
absolute—increases in 10-year CCI-predicted mortality risk, 
respectively (Supplementary Table 3).

Accelerated Aging and Predicted Healthcare Costs
Veterans with faster DunedinPACE aging scores had higher 
predicted healthcare costs at baseline (β, 0.11; 95% CI, 
0.06–0.15, p < .001). Veterans with faster aging scores had 
greater increases in predicted costs over the next 5 years (β, 
0.08; 95% CI, 0.03–0.13; p < .001), 10 years (β, 0.23; 95% 
CI, 0.15–0.31; p < .001), and 15 years (β, 0.21, 95% CI, 
0.11–0.30, p < .001). These results largely remained when 
controlling for clinical biomarkers and smoking measures 
(Table 1). Similar to the CCI, associations increased in size as 
the follow-up periods increased in length. At the 5-, 10-, and 
15-year follow-ups, fastest aging veterans had 11%, 40%, 
and 38% greater increases in predicted healthcare costs com-
pared to the slowest aging veterans (Supplementary Table 3). 
With estimated annual costs of $14 950 per veteran patient in 
2021 (31), these represent $1 645, $5 980, and $5 681 greater 
increases in annual healthcare expenditures, respectively.

Accelerated Aging and Chronic Disease Incidence
Veterans with faster DunedinPACE aging scores were at 
increased risk for the onset of any chronic disease comprising 
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the CCI (HR, 1.29; 95% CI, 1.21–1.39; p < .001). When test-
ing individual chronic diseases, faster aging was associated 
with greater risk for incident myocardial infarction (84%), 
stroke (38%), peripheral vascular disease (55%), diabetes 
(56%), chronic pulmonary disease (19%), cancer (25%), liver 
disease (44%), and renal disease (34%; Figure 2). Results 
remained when controlling for clinical biomarkers and smok-
ing (Table 2), with the exception of peripheral vascular disease 
and chronic pulmonary disease. Figure 3 illustrates diabetes 
onset by DunedinPACE aging score categories.

Accelerated Aging and Mortality
Veterans with faster DunedinPACE aging scores were more 
likely to die due to all causes (HR, 1.38; 95% CI, 1.12–1.72, 
p = .016). Notably, when excluding mortality due to acute 
events, the association between aging scores and mortal-
ity was approximately twice as strong (HR, 1.74, 95% CI, 
1.27–2.39, p < .001). DunedinPACE remained associated 
with mortality due to chronic disease when also controlling 
for clinical covariates and smoking (Table 2). Aging scores 
were not associated with mortality due to acute events (HR, 
0.96, 95% CI, 0.63–1.33, p = .836).

Results Stratified by Sex, Race, and Ethnicity
We examined associations for CCI and Nosos scores when 
stratifying by sex, then by race and ethnicity. Men and women 
veterans showed largely similar associations of DunedinPACE 
with CCI and Nosos scores at baseline, as well as change 
over the next 5, 10, and 15 years (Supplementary Table 4). 
Non-Hispanic Black veterans and non-Hispanic White veter-
ans also showed similar associations of DunedinPACE with 
CCI and Nosos scores at baseline, as well as change over the 
next 5, 10, and 15 years (Supplementary Table 5). There were 
no consistent moderations by sex, race, or ethnicity across the 
CCI or Nosos score outcomes.

Results Stratified by Methylation Chip
We also examined whether associations for DunedinPACE 
with CCI and Nosos scores varied by methylation chip. 

Methylation chip did not significantly moderate the associ-
ation between DunedinPACE and any outcome (Supplemen-
tary Table 6).

Results for PC-based Second-generation Epigenetic 
Clocks
We focused on DunedinPACE epigenetic aging scores in our 
study, as DunedinPACE currently represents the most widely 
used third-generation epigenetic measure trained on longitu-
dinal biomarker data. However, we also tested associations 
for 2 PC-based second-generation epigenetic clocks (12), PC-
PhenoAge and PC-GrimAge. Consistent with prior studies, the 
3 measures of aging were moderately correlated (.33 ≤ r ≤ .52, 
all ps < .001). When accounting for demographic and techni-
cal covariates, PC-PhenoAge was not consistently associated 
with prospective health. In contrast, PC-GrimAge was largely 
associated with CCI and Nosos scores, as well as a number 
of specific chronic diseases, all-cause mortality, and chronic 
disease mortality. Descriptively, the magnitude of most associ-
ations for PC-GrimAge was comparable to those for Duned-
inPACE, though DunedinPACE associations were larger when 
assessing longitudinal change in CCI scores, particularly over 
longer follow-up periods. Full results for DunedinPACE, 
PC-PhenoAge, and PC-GrimAge are presented in Supplemen-
tary Table 7.

Discussion
Veterans with faster DunedinPACE aging scores developed 
more chronic disease, showed larger increases in predicted 
healthcare costs, and were at greater risk of premature mor-
tality over the follow-up, as observed in an average of 13.1 
years of VA health records. The sizes of these prospective 
associations appear clinically significant. After 10 years, vet-
erans with faster aging developed approximately 1 additional 
chronic disease (0.92 points on the CCI), corresponding to 
a 4.7% larger increase in 10-year predicted mortality risk 
compared to veterans with slower aging (a 5.6% vs 0.9% 
increase, 6.2 times greater increase in relative risk). Veterans 

Table 1. Association of DunedinPACE and Prospective Health Among post-9/11 Veterans

Association With DunedinPACE Age-adjusted Bivariate 
Association

Adding Demographic and 
Technical Covariates

Adding Clinical 
Biomarkers

Adding Self-reported and 
Methylation Smoking

  N = 2 216 β 95% CI β 95% CI β 95% CI β 95% CI

Chronic disease burden (Charlson Comorbidity Index score)

  �  Baseline CCI score 0.25** [0.14, 0.36] 0.23** [0.10, 0.35] 0.20** [0.07, 0.33] 0.19* [0.01, 0.36]

  �  5-Year change in CCI 0.20** [0.13, 0.28] 0.22** [0.13, 0.31] 0.17** [0.07, 0.26] 0.14** [0.04, 0.25]

  �  10-Year change in CCI 0.19** [0.12, 0.26] 0.24** [0.16, 0.31] 0.19** [0.11, 0.27] 0.18** [0.10, 0.26]

  �  15-Year change in CCI 0.29** [0.19, 0.38] 0.31** [0.20, 0.42] 0.27** [0.16, 0.38] 0.30** [0.18, 0.42]

Predicted annual VA healthcare costs (Nosos risk adjustment score)

  �  Baseline Nosos score 0.09** [0.04, 0.12] 0.11** [0.06, 0.15] 0.11** [0.03, 0.10] 0.04 [−0.01, 0.09]

  �  5-Year change in Nosos 0.09** [0.05, 0.14] 0.08** [0.03, 0.13] 0.07** [0.01, 0.12] 0.03 [−0.03, 0.10]

  �  10-Year change in Nosos 0.24** [0.17, 0.31] 0.23** [0.15, 0.31] 0.23** [0.14, 0.31]  0.22** [0.12, 0.31]

  �  15-Year change in Nosos 0.22** [0.13, 0.31] 0.21** [0.11, 0.30] 0.19** [0.09, 0.29]  0.15** [0.04, 0.26]

Notes: Each model adds covariates to the model, first demographics (sex, race and ethnicity, and education) and technical covariates (chip type, cell 
proportions), then clinical biomarkers (body mass, blood pressure, and heart rate), and then self-reported smoking and smoking methylation scores. CCI 
outcomes were estimated with Poisson regression using Monte Carlo simulation to account for missing data; Nosos outcomes were estimated with linear 
regression using full information maximum likelihood. CI = confidence interval.
*p < .05.
**p < .01.
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with faster aging also had a 40% larger increase in pre-
dicted healthcare costs over the next 10 years, representing 
$5 980 higher annual costs per VA patient compared to vet-
erans with slower aging. In terms of specific chronic disease 
morbidity and mortality, a 1 SD higher DunedinPACE aging 
score was associated with a 32% increased risk of develop-
ing any chronic disease—including increased risk for inci-
dent myocardial infarction (61%), stroke (32%), diabetes 
(85%), cancer (28%), liver disease (52%), and renal disease 
(46%)—and a 64% increased risk of death due to chronic 
disease. These associations accounted for numerous covari-
ates—including chronological age, demographic and techni-
cal covariates, clinical biomarkers (body mass, BP, and HR), 
self-reported smoking, and smoking methylation scores—and 
excluded individuals with the relevant chronic disease at 

baseline. Notably, associations were largely similar for men 
and women veterans, as well as for non-Hispanic Black veter-
ans and non-Hispanic White veterans.

Our results provide additional support and validation for 
the use of epigenetic aging measures as surrogate health out-
comes in observational studies of health (13) and random-
ized control trials (12) aiming to slow aging (16). Although 
prior studies have linked epigenetic aging to a subset of pro-
spective health outcomes using research cohorts (3,4,37,38), 
particularly mortality (3–6,14,15), none have used EHR data 
from an integrated healthcare system in a real-world medical 
setting. The sizes of the associations between DunedinPACE 
and chronic disease morbidity and mortality in our study 
were largely comparable to those reported in the original 
validation of DunedinPACE (3). Belsky and colleagues found 

Figure 1. Panel A presents CCI scores over time grouped by DunedinPACE aging scores. Four groups were created by standardizing DunedinPACE 
scores and creating cutoffs at the mean and 0.75 SD above and below the mean, corresponding to DunedinPACE values of “slowest aging” ≤ 0.98 
(n = 517, 23.3%), “slow aging” between 0.98 and 1.07 (n = 656, 29.6%), “fast aging” between 1.07 and 1.15 (n = 561, 25.3%), and 1.15 ≤ for “fastest 
aging” (n = 482, 21.8%). Groups were created using a priori SD cutoffs to rough quartiles for illustrative purposes—all models used full DunedinPACE 
aging scores. Panel B presents the study sample by year of enrollment in the PDMH and years of follow-up. Baseline PDMH enrollment included the 
blood draw used to derive DNA methylation data from whole blood.
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DunedinPACE was associated with 23% increased risk of 
incident chronic disease, 37% increased risk of stroke, and 
26%–65% increased risk of mortality across 2 research 
cohorts—older men veterans in the Normative Aging Study 
(mean age, 77 years) and individuals in the Framingham 
Offspring study (mean age, 66 years) (3). Similarly, we found 
DunedinPACE was associated with a 28% increased risk of 
incident chronic disease, 38% increased risk of stroke, 38% 
increased risk of all-cause mortality, and 74% increased risk 
of chronic disease mortality when controlling for demo-
graphic characteristics. Although the cohorts differed in com-
position—including age and sex—associations across samples 
were notably consistent.

Empirical evidence that epigenetic aging scores are asso-
ciated with incident morbidity and mortality in an inte-
grated healthcare system highlights the potential clinical and 
research applications of aging biomarkers. The associations 
presented in this study remained clinically relevant, even 
when accounting for common demographic characteristics, 
clinical biomarkers, and smoking. For example, the size of 
the association between DunedinPACE and change in chronic 
disease burden over the next decade was equivalent to that 
of 8.8 years chronological aging. The differences between 
all-cause and chronic disease mortality were similarly nota-
ble. The association between DunedinPACE and all-cause 
mortality was attenuated when accounting for the full range 
of covariates, particularly smoking behavior and methyla-
tion scores; however, the association with chronic disease 
death was not attributable to smoking or other covariates. 
Stronger associations with chronic disease death would be 
expected by a measure indexing accelerated aging, when 
compared to all-cause mortality, which includes deaths due 
to acute causes that DunedinPACE would not be expected 

to directly predict (eg, motor vehicle accidents). Finally, the 
DNAm data underlying aging scores derived using current 
algorithms would be available for any future refinements to 
those algorithms (such as the revised PC-based algorithms). 
As refinements occur, new algorithms can be validated with 
data from cohorts such as the PDMH. Ideally, epigenetic 
aging measures will eventually reach levels of reliability and 
validity that provide predictive utility for individual patients 
and clinical providers.

These results have particular relevance to the Veterans 
Health Administration (VHA). The post-9/11 cohort (cur-
rently over 5 million of the 17.9 million living U.S. veterans 
(39)) is a growing proportion of patients served by the VHA 
(40) and has different characteristics compared to previous 
service cohorts, such as greater numbers of women (39–41). 
Our findings show epigenetic aging is associated with pro-
spective health across men and women, as well as across 
non-Hispanic Black and non-Hispanic White veterans, sug-
gesting that future uses for epigenetic aging scores would 
benefit the patient populations that will utilize VHA services. 
Notably, the post-9/11 cohort of veterans is approaching mid-
life and older age (41), periods when chronic disease mor-
bidity and mortality become more pronounced. This risk is 
also an opportunity. The VHA is the largest integrated health-
care system in the United States and implementing interven-
tions to address risk (14,16,42) for accelerated aging—such 
as unhealthy behaviors (14) or PTSD (20)—could delay or 
prevent the development of ill health for a large number of 
veterans. If successful, efforts to slow aging using behavioral 
treatments (43) or other potentially geroprotective interven-
tions could reduce healthcare costs and prolong veterans’ 
independence, health, and well-being as they grow older. 
VA clinical trials could also provide data and guidance for 

Figure 2. Visualization of the HRs for each of the CCI chronic disease categories over the follow-up period. Effects represent HRs per 1 SD difference 
in DunedinPACE. All estimates include demographic and technical DNAm covariates. Number of cases and excluded participants for each estimate are 
presented in Table 2. Error bars represent 95% confidence intervals.
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implementing interventions in other non-VA populations and 
healthcare systems.

This study has limitations relevant to interpreting our find-
ings. First, the EHR-derived health outcomes can only cap-
ture VA clinical encounters or referrals to community care 
through VA sources. Although it is unlikely that aging and 
chronic disease onset vary systematically by the amount or 
type of community care that veterans access through pri-
vate insurance, it is possible our data are not representative 
of all veterans’ health. Second, these results controlled for 3 
health-relevant clinical biomarkers (body mass, BP, and HR) 
that are routinely collected during clinical care, including pri-
mary care. Other biomarkers might provide additional clini-
cal utility in predicting future health, but could also introduce 
new bias due to selection effects, as tests are generally ordered 
due to providers’ or veteran patients’ health concerns, age, or 
other systematic reasons. Future studies would benefit from 
comparisons between DNAm measures of aging and other 
clinical biomarkers collected across full samples. Third, it is 
not clear to what extent results would generalize to nonvet-
eran populations. It will be important to validate these results 
in other healthcare systems. Fourth, although the longitudi-
nal associations adjusted for baseline health status, clinical 
biomarkers, and multiple measures of smoking, it is possi-
ble that additional unmeasured confounders explained the 
observed associations. Establishing causal links between epi-
genetic aging measures and health outcomes will benefit from 
experimental designs, such as randomized clinical trials, that 

can show interventions reliably produce changes in epigene-
tic aging (44), and that those changes in aging scores trans-
late to improved health (45). Fifth, the sample averaged 38 
years old at baseline and 51 years old at follow up. Many of 
the diseases associated with aging show increased incidence 
at older ages (eg, dementia) and there may be greater statis-
tical power to detect effects in cohorts with older average 
ages with increased disease prevalence. Finally, the length of 
the EHR follow-up varied based on the year that veterans 
enrolled in the PDMH cohort. Although aging scores were 
not correlated with enrollment date and results replicated 
both when accounting for missing data and using listwise 
deletion, continuing to replicate our findings as the lengths of 
EHR observation increases in duration would provide addi-
tional confidence in our findings.

Conclusion
Epigenetic aging scores were associated with increased risk 
for chronic disease morbidity and mortality, as observed in 
VA medical records for 2 216 U.S. veterans (11) who served 
after September 11, 2001. Consistent with the geroscience 
hypothesis, faster aging was associated with poorer prospec-
tive health across multiple chronic disease categories and 
organ systems. Epigenetic measures of aging, such as Duned-
inPACE, might be useful surrogate outcomes for clinical 
trials and observational cohort studies. With additional val-
idation, epigenetic measures of aging might serve as clinical 

Table 2. Association of DunedinPACE, Chronic Disease Incidence, and Mortality Among Post-9/11 Veterans

Association With 
DunedinPACE

Chronic Disease at 
Baseline and Follow-up

Age-adjusted 
Bivariate 
Association

Adding 
Demographics and 
Technical Covariates

Adding Clinical 
Biomarkers

Adding Self-reported 
and Methylation 
Smoking

Baseline Dx Dx Onset HR 95% CI HR 95% CI HR 95% CI HR 95% CI

Any chronic disease category

 � Chronic disease onset n = 364 n = 789 1.29** [1.21, 1.39] 1.28** [1.19, 1.39] 1.24** [1.13, 1.37] 1.32** [1.21, 1.45]

Chronic disease categories

 � Myocardial infarction n = 5 n = 56 1.64** [1.32, 2.04] 1.84** [1.44, 2.35] 1.73** [1.26, 2.37] 1.61** [1.17, 2.22]

 � Stroke n = 21 n = 109 1.30* [1.06, 1.61] 1.38** [1.09, 1.73] 1.47** [1.15, 1.88] 1.32* [1.04, 1.68]

 � Heart failure n = 13 n = 53 1.38* [1.07, 1.78] 1.20 [0.90, 1.59] 1.05 [0.76, 1.44] 1.07 [0.77, 1.49]

 � Peripheral vascular disease n = 17 n = 41 1.56** [1.16, 2.08] 1.55** [1.11, 2.17] 1.56* [1.06, 2.31] 1.29 [0.87, 1.90]

 � Diabetes n = 7 n = 482 1.54** [1.41, 1.67] 1.56** [1.42, 1.71] 1.40** [1.25, 1.57] 1.85** [1.66, 2.06]

 � Dementia n = 12 n = 29 1.39 [0.99, 1.97] 1.32 [0.88, 1.97] 1.50 [0.94, 2.39] 1.22 [0.77, 1.94]

 � Peptic ulcer disease n = 17 n = 36 1.29 [0.94, 1.77] 1.20 [0.84, 1.71] 1.09 [0.73, 1.62] 1.14 [0.76, 1.72]

 � Rheumatic disease n = 14 n = 43 1.07 [0.79, 1.45] 1.02 [0.73, 1.44] 1.18 [0.80, 1.74] 0.93 [0.63, 1.38]

 � Chronic pulmonary disease n = 234 n = 325 1.20** [1.07, 1.34] 1.19** [1.06, 1.34] 1.25** [1.08, 1.44] 1.08 [0.94, 1.24]

 � Cancer n = 42 n = 111 1.21* [1.00, 1.45] 1.25* [1.02, 1.54] 1.35* [1.07, 1.71] 1.28* [1.01, 1.63]

 � Liver disease n = 24 n = 206 1.35** [1.18, 1.55] 1.44** [1.24, 1.66] 1.34** [1.13, 1.58] 1.52** [1.27, 1.81]

 � Renal disease n = 26 n = 153 1.30** [1.11, 1.51] 1.34** [1.13, 1.60] 1.36** [1.11, 1.67] 1.46** [1.20, 1.78]

Mortality

 � All-cause mortality – n = 92 1.28* [1.02, 1.59] 1.38** [1.12, 1.72] 1.25 [0.97, 1.62] 1.06 [0.82, 1.38]

 � Chronic disease mortality – n = 40 1.55** [1.16, 2.06] 1.74** [1.27, 2.39] 1.59* [1.10, 2.32] 1.63** [1.13, 2.36]

Notes: Each disease specific model excluded participants with the disease at baseline from the cohort N of 2 216. Models assessing the inclusion of clinical 
biomarkers and smoking measures were run with those sets of covariates separately to reduce missing data for the models that included smoking measures. 
Demographic and technical covariates models also excluded 21 participants who were missing data, clinical biomarker models excluded 561 participants 
with missing biomarker and education data, and models including self-reported smoking excluded 29 participants missing self-reported smoking or 
education data. Demographic variables included age, sex, race and ethnicity, education, and technical covariates included chip type and white blood cell 
proportions. CI = confidence interval; Dx = diagnosis; HR = hazard ratio.
*p < .05.
**p < .01.
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biomarkers of future health risk that can identify individuals 
who might be candidates for geroprotective interventions.
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Supplementary data are available at The Journals of 
Gerontology, Series A: Biological Sciences and Medical 
Sciences online.
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