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Young people’s life chances can be predicted by character-
istics of their neighbourhood1. Children growing up in disad-
vantaged neighbourhoods exhibit worse physical and mental 
health and suffer poorer educational and economic outcomes 
than children growing up in advantaged neighbourhoods. 
Increasing recognition that aspects of social inequalities 
tend, in fact, to be geographical inequalities2–5 is stimulating 
research and focusing policy interest on the role of place in 
shaping health, behaviour and social outcomes. Where neigh-
bourhood effects are causal, neighbourhood-level interven-
tions can be effective. Where neighbourhood effects reflect 
selection of families with different characteristics into dif-
ferent neighbourhoods, interventions should instead target 
families or individuals directly. To test how selection may 
affect different neighbourhood-linked problems, we linked 
neighbourhood data with genetic, health and social outcome 
data for >7,000 European-descent UK and US young people 
in the E-Risk and Add Health studies. We tested selection/
concentration of genetic risks for obesity, schizophrenia, 
teen pregnancy and poor educational outcomes in high-risk 
neighbourhoods, including genetic analysis of neighbourhood 
mobility. Findings argue against genetic selection/concentra-
tion as an explanation for neighbourhood gradients in obesity 
and mental health problems. By contrast, modest genetic 
selection/concentration was evident for teen pregnancy and 
poor educational outcomes, suggesting that neighbourhood 
effects for these outcomes should be interpreted with care.

A challenge in understanding how neighborhoods impact peo-
ple’s lives is distinguishing causal effects of neighbourhood features 
from processes of selection in which individuals with different 
characteristics come to live in different neighbourhoods6,7. There 
is growing evidence that at least some neighbourhood effects are 
causal; in a natural experiment arising from immigration policy in 
Sweden and in a randomized trial of a housing voucher programme 
in the United States, people assigned to better-off neighbourhoods 
tended to have some better health outcomes8,9. Economic benefits 
of neighbourhood interventions are less clear, but may be present 
for children whose neighbourhoods are changed relatively early 

in life10,11. But selection effects are also apparent. For example, in 
one study of hurricane survivors, those in poorer health before the 
disaster tended to relocate to higher-poverty communities in its 
aftermath12. Selection and causation in neighbourhood effects are 
not mutually exclusive: both can occur13. Better understanding of 
how selection may contribute to apparent neighbourhood effects 
is needed to guide intervention design and policy. Where selection 
can be ruled out as an explanation of neighbourhood effects, neigh-
bourhood-level interventions could be prioritized. In instances in 
which apparent neighbourhood effects reflect selection processes, 
interventions delivered to individuals or families directly might 
prove more effective.

To evaluate the size and scope of selection effects in neighbour-
hood research, methods are needed that quantify selection factors 
and that are not influenced by neighbourhood conditions. The 
ideal approach is to compare fixed characteristics between children 
growing up in high-risk neighbourhoods and peers growing up in 
better-off neighbourhoods. Because neighbourhoods may affect 
individuals as early as the very beginnings of their lives3,14, tradi-
tional social science measurements are problematic. Recent dis-
coveries from genome-wide association studies (GWAS) provide a 
new opportunity to quantify selection effects at the level of the indi-
vidual: polygenic scores. DNA sequence is fixed at conception and 
is never altered by neighbourhood environments. Because children 
inherit their DNA sequence from their parents, measures of genetic 
risk form a conceptual link between familial characteristics, such 
as parental education, that may influence selection into neighbour-
hoods and children’s health and social outcomes. In this article, we 
report proof-of-concept polygenic score analysis to quantify genetic 
selection into neighbourhoods.

We analysed polygenic scores and neighbourhood conditions 
in 1,999 young people from the Environmental Risk Longitudinal 
Study (E-Risk), a birth cohort ascertained from a birth registry in 
England and Wales and followed prospectively through 18 years of 
age. We studied phenotypes that represent substantial public health 
and economic burdens, have been linked with neighbourhood risk 
in previous studies, are prevalent among 18-year olds in England and 
Wales, and have been subject to large-scale GWAS meta-analyses:  
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obesity, mental health problems, teen pregnancy and poor edu-
cational outcomes. We measured children’s genetic risk using 
four polygenic scores computed based on results from published 
GWAS of obesity, schizophrenia, age at first birth and educational 
attainment15–18. We measured their neighbourhoods using admin-
istrative, survey and systematic social observation19 data collected 
during their childhoods. We tested for the expected associations of 
polygenic and neighbourhood risk with E-Risk children’s develop-
ment of obesity and mental health problems, teen pregnancy, earn-
ing poor educational qualifications and not being in education, 
employment or training (NEET), as measured during home visits 
at 18 years of age. To test for genetic selection effects, we tested for 
gene–environment correlations, in which young people who car-
ried elevated burdens of polygenic risk tended to have grown up in 
more-disadvantaged neighbourhoods. To test whether gene–envi-
ronment correlations reflected the passive inheritance of genet-
ics and neighbourhood conditions from parents, we also analysed 
the genetics of the children’s mothers. Finally, to test how genetics 
might become correlated with neighbourhood conditions, we tested 
genetic associations with neighbourhood mobility using data from 
5,325 participants in the US-based National Longitudinal Study of 
Adolescent to Adult Health (Add Health), a nationally representa-
tive longitudinal study of American adolescents followed prospec-
tively through their late 20s or early 30s.

As anticipated by the genetics literature, E-Risk children with 
higher genetic risk had more health and social problems by 18 years 
of age. We computed polygenic scores from published GWAS 
results for obesity, schizophrenia, age-at-first birth and educational 
attainment15–18 using the methods described by Dudbridge20. This 
method proceeds as follows: first, single-nucleotide polymorphisms 
(SNPs) in the E-Risk database were matched with SNPs reported in 
the GWAS publications. Second, for each matched SNP, a weight is 
calculated equal to the number of phenotype-associated alleles mul-
tiplied by the effect size estimated in the GWAS. Finally, the average 
weight across all SNPs in a study member’s genome is calculated to 
compute their polygenic score. Scores were transformed to have a 
cohort-wide mean = 0 and standard deviation (s.d.) = 1 for analysis.

Eighteen-year olds with a higher polygenic risk for obesity 
were at increased risk for obesity (relative risk (RR) = 1.26, 95% 
CI: 1.14–1.38); those with a higher polygenic risk for schizophre-
nia were at increased risk for mental health problems (RR = 1.13, 
95% CI: 1.02–1.26); those with a higher polygenic risk of young age 
at first birth were at increased risk for teen pregnancy (RR = 1.40, 
95% CI: 1.19–1.63); and those with a higher polygenic risk for low 
educational attainment were at increased risk for poor educational 
qualifications (RR = 1.46, 95% CI: 1.34–1.59) and becoming NEET 
(RR = 1.32, 95% CI: 1.15–1.51) (Fig. 1, and Supplementary Table 1, 
panel A).

An advantage of using genetics to test for potential selection 
effects is that genotypes cannot be caused by the neighbourhoods 
where children live, ruling out reverse causation. A second advan-
tage is that genetics may provide new information over and above 
what can be measured from children’s families21–23. To evaluate 
whether the polygenic scores that we studied provided new infor-
mation over and above family history risk information, we repeated 
our polygenic score analysis, adding covariate adjustment for fam-
ily history measures. After covariate adjustment for family history, 
associations of young people’s polygenic scores with their health and 
social problems were modestly attenuated. Family history analysis is 
reported in Supplementary Table 1, panels B and C.

As anticipated from the neighbourhood-effects literature, chil-
dren growing up in more-disadvantaged neighbourhoods were at 
increased risk for health and social problems by 18 years of age. 
Because there is no single standard to quantify neighbourhood 
risks6,24, we used two different approaches to measure E-Risk chil-
dren’s exposure to neighbourhood disadvantage.

The first approach characterized the neighbourhoods as they 
are seen by businesses and the public sector, using a consumer clas-
sification system called ACORN (‘A Classification of Residential 
Neighbourhoods’). We computed the average ACORN classification 
across children’s home addresses when they were aged 5, 7, 10 and 
12 years. According to ACORN, 22% of E-Risk cohort children grew 
up in ‘wealthy achiever’ neighbourhoods, 33% grew up in ‘urban 
prosperity/comfortably off ’ neighbourhoods, 19% grew up in ‘mod-
erate means’ neighbourhoods, and 26% grew up in ‘hard pressed’ 
neighbourhoods. This distribution matched the overall distribu-
tions for the United Kingdom. As an example, ACORN distribu-
tions for E-Risk families at the time of the age-12 assessment are 
compared to the national distribution in Fig. 2a.

The second approach characterized neighbourhoods as they are 
seen by social scientists and public health researchers. Ecological-
risk measures were constructed from (1) geodemographic data from 
local governments, (2) official crime data accessed as part of an open 
data sharing effort about crime and policing in England and Wales, 
(3) a Google Street View Virtual systematic social observation19, 
and (4) data from surveys of neighbourhood residents (Fig. 2b).  
We used these data to score neighbourhoods on their economic 
deprivation, physical dilapidation, social disconnection and dan-
gerousness. We standardized scores to have mean = 50 and s.d. = 10 
(T scores). We summed these four ecological-risk measures to com-
pute one composite ecological-risk index (mean = 198, s.d. = 33) 
(Supplementary Fig. 1). Ecological-risk measures were correlated 
with ACORN classifications (for the ecological-risk index r = 0.65; 
correlations for all measures are reported in Supplementary Table 2 
and Supplementary Fig. 1).

Eighteen-year olds who grew up in neighbourhoods with more 
disadvantaged ACORN classifications or with higher scores on 
the ecological-risk index were at increased risk for obesity, mental 
health problems, teen pregnancy, poor educational qualifications 
and NEET status (obesity ACORN RR = 1.20 (95% CI: 1.10–1.31), 
ecological-risk index RR = 1.15 (95% CI: 1.03–1.29); mental health 
problems ACORN RR = 1.19 (95% CI: 1.08–1.31), ecological-risk 
index RR = 1.30 (95% CI: 1.14–1.47); teen pregnancy ACORN 
RR = 1.56 (95% CI: 1.34–1.83), ecological-risk index RR = 1.55 (95% 
CI: 1.30–1.85); poor educational qualifications ACORN RR = 1.53 
(95% CI: 1.40–1.67), ecological-risk index RR = 1.47 (95% CI: 1.33–
1.62); NEET ACORN RR = 1.52 (95% CI: 1.33–1.74), ecological-
risk index RR = 1.59 (95% CI: 1.36–1.85)). Figure 3a plots the risk 
for each health and social problem by childhood neighbourhood 
disadvantage. Results for all neighbourhood measures are reported 
in Supplementary Table 3.

We found little evidence that genetic selection/concentration 
explained neighbourhood risk for obesity or mental health prob-
lems. Although children’s genetic risk and their neighbourhood dis-
advantage separately predicted their increased risk of obesity and 
mental health problems, polygenic risks for obesity and schizophre-
nia were not consistently related to neighbourhood disadvantage. 
Figure 3 shows this result graphically. Whereas the blue slopes in 
Fig. 3a document positive associations between neighbourhood dis-
advantage and risk for obesity and mental health problems, the red 
slopes in Fig. 3b reveal null associations between neighbourhood 
disadvantage and polygenic risk for obesity and null or weak asso-
ciations between neighbourhood disadvantage and polygenic risk 
for schizophrenia. In the E-Risk cohort, children raised in disadvan-
taged neighbourhoods more often became obese by 18 years of age; 
however, we found no evidence for concentration of children with 
high polygenic risk in disadvantaged neighbourhoods (ACORN 
r = −0.01 (95% CI: −0.07 to 0.04); ecological-risk index r = −0.01 
(95% CI: −0.08 to 0.07)). Results were similar for analysis of genetic 
risk for schizophrenia, although the association between children’s 
polygenic scores and their neighbourhood ecological-risk index 
was significant at the α = 0.05 level (ACORN r = 0.04 (95% CI:−0.01 
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to 0.10); ecological-risk index r = 0.08 (95 % CI: 0.01–0.15)). Results 
for all neighbourhood measures are reported in Supplementary 
Table 4. These findings argue against neighbourhood selection/
composition as a source of neighbourhood gradients in obesity and 
mental health problems and encourage more research to unravel the 
possible causal effects of neighbourhood conditions on physical and 
mental health.

We found evidence of genetic selection/concentration in disad-
vantaged neighbourhoods of children at high polygenic risk of teen 
pregnancy, poor educational attainment and NEET status. We tested 
whether children at higher polygenic risk for young age at first birth 
and poor educational attainment tended to grow up in more-disad-
vantaged neighbourhoods. They did, as measured by both ACORN 
classification and the composite ecological-risk index. Figure 3 
shows this result graphically. The blue slopes in Fig. 3a document 
positive associations between neighbourhood disadvantage and 
risk for teen pregnancy, poor educational outcomes and NEET sta-
tus. In parallel, the red slopes in Fig. 3b reveal positive associations 
between neighbourhood risk and polygenic risk for young age at 
first birth (reversed values of the age-at-first-birth polygenic score, 
y axis of the right graph; ACORN r = 0.12 (95% CI: 0.06–0.17); 
ecological-risk index r = 0.12 (95% CI: 0.04–0.19)) and low educa-
tional attainment (reversed values of the education polygenic score, 
y axis of the right graph; ACORN r = 0.18 (95% CI: 0.12–0.23); 
ecological-risk index r = 0.17 (95% CI: 0.09–0.25)). Results for all 
neighbourhood measures are reported in Supplementary Table 4. 
These findings suggest that neighbourhood selection/composition 
may be relevant to neighbourhood–teen pregnancy and neighbour-
hood–achievement gradients and encourage research to understand 
selection processes.

Children inherited genetic and neighbourhood risks from their 
parents. E-Risk children were 5–12 years of age during the period 

when neighbourhood data were collected. It is unlikely that they 
actively selected themselves into different types of neighbourhoods. 
Instead, a hypothesis for why children’s polygenic and neighbour-
hood risks are correlated is that both risks are inherited from their 
parents. According to this hypothesis, genetics influence parents’ 
characteristics and behaviours, which in turn affect where they 
live. Children subsequently inherit their parents’ genetics and their 
neighbourhoods. As an initial test of this hypothesis, we analysed 
genetic data that we collected in E-Risk from children’s mothers 
(n = 858 with children included in analysis). (E-Risk did not col-
lect fathers’ DNA.) As expected, polygenic scores were correlated 
between E-Risk participants and their mothers (r = 0.50–0.52). We 
first tested whether mothers’ polygenic scores were associated with 
neighbourhood disadvantage. Parallel to the results from analysis of 
children’s genetics, we did not detect associations of mothers’ obe-
sity and schizophrenia polygenic scores with neighbourhood dis-
advantage (r = 0.00–0.04). Also consistent with analysis of children, 
mother’s age-at-first-birth and educational attainment polygenic 
scores were associated with neighbourhood disadvantage (effect 
sizes r = 0.14–0.21; Supplementary Table 5). Next, we repeated the 
analysis of association between children’s polygenic scores and 
neighbourhood disadvantage, this time including a covariate for the 
mother’s polygenic score. Consistent with the hypothesis that chil-
dren’s polygenic and neighbourhood risks are correlated because 
both risks are inherited from their parents, covariate adjustment 
for mothers’ polygenic scores reduced the magnitudes of asso-
ciations between children’s polygenic scores and their neighbour-
hood disadvantage by more than half (Supplementary Table 6 and 
Supplementary Fig. 2).

Polygenic risk for teen pregnancy and low educational attain-
ment predicted downward neighbourhood mobility among partici-
pants in the US National Longitudinal Study of Adolescent to Adult 
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Fig. 1 | Children with a higher genetic risk had more health and social problems by 18 years of age. Graphs show the fitted probabilities of each health 
and social problem across the distribution of polygenic risk. Models were adjusted for sex. The grey line intersecting the y axis shows the frequency of the 
health or social problem in E-Risk. The shaded areas around the fitted slopes show 95% CIs. The probability of obesity is graphed against polygenic risk for 
obesity (RR = 1.26, 95% CI: 1.14–1.38, n = 1,837). The probability of mental health problems is graphed against polygenic risk for schizophrenia (RR = 1.13, 
95% CI: 1.02–1.26, n = 1,863). The probability of teen pregnancy is graphed against polygenic risk for young age at first birth (RR = 1.40, 95% CI: 1.19–1.64, 
n = 1,825). The probabilities of poor educational qualification and NEET status are graphed against polygenic risk for low educational attainment (poor 
educational qualification RR = 1.47, 95% CI: 1.34–1.60, n = 1,860; NEET RR = 1.32, 95% CI: 1.15–1.52, n = 1,863) (Supplementary Table 1). Effect sizes are 
reported for a 1-s.d. increase in polygenic risk.
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Fig. 2 | Quantification of E-Risk families’ neighbourhood disadvantage using ACORN and a composite ecological-risk index. a, Distributions of ACORN 
classifications for E-Risk families at the time of the age-12 interview (n = 1,008 families with genetic data) and the corresponding distribution for the 
United Kingdom obtained from http://doc.ukdataservice.ac.uk/doc/6069/mrdoc/pdf/6069_acorn_userguide.pdf. b, The figure contains four cells 
(i–iv). (i) The four sources of data used for ecological-risk assessment: geodemographic data from local governments, resident surveys, Google Street 
View systematic social observation and official crime data. Image created by Motsavage Design/Bigstock.com. (ii) Images illustrating: a well-kept 
neighbourhood, visible play area for children, and roads and sidewalks in good condition (1); evidence of graffiti, poorly kept sidewalk and trash container, 
and sidewalks in fair condition (2); deprived residential area, vacant lot in poor condition, a heavy amount of litter and sidewalks in poor condition (3); 
and comfortably off residential area, roads and sidewalks in good conditions, and no signs of litter, graffiti or other signs of disorder (4). Images are 
from Google Street View. (iii) Distributions of four ecological-risk measures derived from these data: economic deprivation, physical dilapidation, social 
disconnectedness and danger. The values of the ecological-risk measures are expressed as T scores (mean = 50, s.d. = 10) (n = 987 families with genetic 
data). (iv) A matrix of the ecological-risk measures, illustrating their correlation with one another (see Supplementary Table 2). The matrix cells below and 
to the left of the measures show scatter plots of their association. The matrix cells above and to the right of the measures show their correlation expressed 
as Pearson’s r (n = 973 families with genetic data and data on all four ecological-risk measures). The dashed red regression lines illustrate the slopes of 
associations between each pair of measures.
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Health (Add Health). If children’s genetic and neighbourhood risks 
are correlated because they inherit both risks from their parents, 
the next question is how parents’ genetics come to be correlated 
with neighbourhood risks. A hypothesis is that parents’ genetics 
influence their characteristics and behaviour in ways that affect 
where they are able to live. To test this hypothesis, data are needed 
that observe the neighbourhood mobility process in which people 
leave the homes where they grew up and selectively end up in new 
neighbourhoods. Because E-Risk began collecting information on 
children’s mothers only after the children were born, data were not 
collected on the mothers’ own childhood neighbourhoods. Thus, to 
test how polygenic risks might influence patterns of neighbourhood 
mobility, we turned to a second data set: Add Health. Add Health 
first surveyed participants when they were secondary school stu-
dents living with their parents. Add Health has since followed par-
ticipants into their late 20s and early 30s25, when most were living 
in new neighbourhoods (n = 5,325 with genetic and neighbourhood  

data; 86% lived >1 km from the address where they was first  
surveyed). We used the Add Health genetic database and neigh-
bourhood measures derived from US Census data to test whether 
the polygenic risk for obesity, schizophrenia, teen pregnancy and 
low educational attainment predicted downward neighbourhood 
mobility, that is, young adults coming to live in more-disadvantaged 
neighbourhoods relative to the neighbourhood they lived in with 
their parents.

Add Health participants’ polygenic risks for obesity and schizo-
phrenia showed weak or null associations with neighbourhood dis-
advantage when they were first surveyed in their parents’ homes as 
secondary school students (polygenic risk for obesity r = 0.03 (95% 
CI: 0.00–0.06); polygenic risk for schizophrenia r = −0.01 (95% CI: 
−0.03 to 0.02)) and when they were followed-up in their 20s and 30s 
(polygenic risk for obesity r = 0.04 (95% CI: 0.01–0.07); polygenic risk 
for schizophrenia r = −0.03 (95% CI: −0.05 to 0.00)). Findings were 
similar in the neighbourhood mobility analysis (polygenic risk for 
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Fig. 3 | Neighbourhood gradients in obesity, mental health problems, teen pregnancy, poor educational qualifications, NEET status and in the genetic 
risk for these phenotypes. a, The neighbourhood risk gradient for each health and social problem. The y axis shows the probability of having a given 
problem at varying levels of neighbourhood risk. Left: probabilities by ACORN classification (n = 1,857). Right: the predicted probabilities for a series of 
values of the composite ecological-risk index (n = 1,822). Effect sizes associated with a one-category increase in disadvantage defined by ACORN and 
with a 1-s.d. increase in disadvantage defined by the ecological-risk index, respectively, were: obesity (RR = 1.20 (95% CI: 1.10–1.31); RR = 1.15 (95% CI: 
1.03–1.29)); mental health problems (RR = 1.19 (95% CI: 1.08–1.31); RR = 1.30 (95% CI: 1.14–1.47)); having a teen pregnancy (RR = 1.56 (95% CI: 1.34–1.83); 
RR = 1.55 (95% CI: 1.30–1.85)); poor educational qualifications (RR = 1.53 (95% CI: 1.40–1.67); RR = 1.47 (95% CI: 1.33–1.62)) and NEET (RR = 1.52 (95% 
CI: 1.33–1.74); RR = 1.59 (95% CI: 1.36–1.85)) (Supplementary Table 3). b, The neighbourhood risk gradient for each polygenic score. The y axis shows 
the polygenic risk on a z-score scale (mean = 0, s.d. = 1) at varying levels of neighbourhood risk; gray lines indicate a z-score value of 0. Left: polygenic 
risk by ACORN classification (n = 1,441). Right: polygenic risk for a series of values of the composite ecological-risk index (n = 1,414). Effect sizes with 
disadvantage defined by ACORN and by the ecological-risk index, respectively, were: body mass index (BMI) polygenic score (r = −0.01 (95% CI: −0.07 
to 0.04); r = −0.01 (95% CI: −0.08 to 0.07)); schizophrenia polygenic score (r = 0.04 (95% CI: −0.01 to 0.10); r = 0.08 (95% CI: 0.01–0.15)); age-at-first-
birth polygenic score (r = 0.12 (95% CI: 0.06–0.17); r = 0.12 (95% CI: 0.04–0.19)); and educational attainment polygenic score (r = 0.18 (95% CI: 0.12–
0.23); r = 0.17 (95% CI: 0.09–0.25)) (Supplementary Table 4). Sample sizes in b are smaller than sample sizes in a because the polygenic score analysis 
shown in b included only one member of each monozygotic twin pair.

Nature Human Behaviour | VOL 3 | JUNE 2019 | 576–586 | www.nature.com/nathumbehav580

http://www.nature.com/nathumbehav


LettersNATURE HUmAn BEhAvIoUR

obesity r = 0.03 (95% CI: 0.00–0.05); polygenic risk for schizophrenia 
r = −0.02 (95% CI: −0.05 to 0.00)). These findings bolster conclusions 
from the E-Risk analysis that genetic selection/concentration is likely 
to be a trivial factor in neighbourhood gradients in obesity and men-
tal health problems, although the obesity polygenic score association 
with neighbourhood risk was significant at the α = 0.05 level in Add 
Health and therefore did not fully replicate the findings in E-Risk.

By contrast, Add Health participants with a higher polygenic risk 
for teen pregnancy and low educational attainment tended to have 
grown up in more-disadvantaged neighbourhoods (r = 0.07 (95% 
CI: 0.05–0.10) for the age-at-first-birth polygenic score and r = 0.17 
(95% CI: 0.14–0.19) for the educational attainment polygenic score) 
and to live in more-disadvantaged neighbourhoods when they were 
followed-up in their 20s and 30s (adult neighbourhood r = 0.09 
(95% CI: 0.06–0.11) for the age-at-first-birth polygenic score and 
r = 0.13 (95% CI: 0.10–0.16) for the educational attainment poly-
genic score). In the neighbourhood mobility analysis, participants 
with a higher polygenic risk for teen pregnancy and low educational 
attainment tended to move to more-disadvantaged neighbourhoods 
relative to the neighbourhoods where they lived with their parents 
when they were first surveyed (downward mobility r = 0.06 (95% 
CI: 0.03–0.08) for the age-at-first-birth polygenic score and r = 0.07 
(95% CI: 0.05–0.09) for the educational attainment polygenic score; 
Fig. 4). These findings bolster conclusions from the E-Risk analysis 
that genetic selection/concentration may contribute to neighbour-
hood gradients in teen pregnancy and poor educational outcomes, 
although this contribution may be small.

To put polygenic score–neighbourhood associations in context, 
we conducted a SNP heritability analysis to estimate the upper 

bound of the information that polygenic scores could contain about 
participants’ neighbourhoods. Traditional heritability analysis com-
pares phenotypic similarity between more and less closely related 
relatives, for example, monozygotic twins who share 100% of their 
DNA and dizygotic twins who share 50% of their DNA. Analysis of 
how much more similar monozygotic twins are than dizygotic twins 
can be used as an estimate of how much of the variation in the phe-
notype can be attributed to genetic differences between people. This 
estimate is called heritability. SNP heritability analysis operates on 
the same principle, but instead of using known genetic similarities 
of relatives, SNP heritability analysis uses measured genetic similar-
ity derived from the same genome-wide SNP data used to construct 
polygenic scores26. An advantage of SNP heritability is that it can be 
estimated from samples of unrelated individuals. We estimated SNP 
heritability of neighbourhood disadvantage in Add Health using 
the GCTA software27. We tested whether Add Health participants 
who were more genetically similar to one another also tended to 
live in neighbourhoods with more similar levels of disadvantage. 
We focused GCTA analysis on the neighbourhoods where Add 
Health participants had moved to by the time of the 2008 follow-up, 
when the participants were in their 20s and 30s. Analysis included 
unrelated (genetic-relatedness matrix (GRM) < 0.05) participants 
with available neighbourhood and genotype data (n = 4,655). (We 
did not conduct GCTA analysis in the E-Risk sample because power 
calculations suggested that plausible SNP heritabilities could not 
be distinguished from zero in that cohort; see Methods.) The result 
showed that neighbourhood disadvantage was heritable; about 
16% of the variance in Add Health participants’ adult neighbour-
hood disadvantage could be explained by their genetics (95% CI: 
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Fig. 4 | Age-at-first-birth and education polygenic score association with neighbourhood mobility in the Add Health study. The figure plots polygenic 
risk associations with adult neighbourhood disadvantage at the census tract level for Add Health participants who grew up in low-disadvantage, average-
disadvantage and high-disadvantage census tracts (n = 5,325). For the figure, low-disadvantage, average-disadvantage and high-disadvantage census 
tracts were defined as the bottom quartile, middle 50% and top quartile of the childhood tract disadvantage score distribution, respectively. The individual 
graphs show binned scatter plots in which each plotted point reflects the average x and y coordinates for a ‘bin’ of 50 Add Health participants. The 
regression lines are plotted from the raw data. The box-and-whisker plots at the bottom of the graphs show the distribution of polygenic risk for each 
childhood neighbourhood disadvantage category. The diamond in the middle of the box shows the median, the box shows the interquartile range, and 
the whiskers show the upper and lower bounds defined by the 25th percentile minus 1.5× the interquartile range and the 75th percentile plus 1.5× the 
interquartile range, respectively. The vertical line intersecting the x axis shows the cohort average polygenic risk. The figure illustrates three findings. 
First, adult participants tended to live in census tracts with similar levels of disadvantage to the census tracts where they grew up. Second, children’s 
polygenic risks and their neighbourhood disadvantage were correlated; the box plots show that polygenic risk tended to be lower for participants who 
grew up in low-disadvantage tracts and higher for participants who grew up in high-disadvantage tracts. Third, across strata of childhood neighbourhood 
disadvantage, children at higher polygenic risk tended to move to more-disadvantaged census tracts no matter where they grew up.
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0.01–0.32). Neighbourhood mobility was somewhat less heritable; 
9% of the variance in neighbourhood mobility could be explained 
by genetics, but the confidence interval for the estimate overlapped 
zero (95% CI: −0.06 to 0.24). Comparing the results of our poly-
genic score analysis with this analysis of SNP heritability suggests 
that, in Add Health, participants’ age-at-first-birth polygenic scores 
explain about 5% of the SNP heritability in neighbourhood disad-
vantage and their education polygenic scores explain about 11% of 
the SNP heritability in neighbourhood disadvantage. For mobility, 
these fractions were 4% and 6% for age-at-first-birth and education 
polygenic scores, respectively.

In summary, sociogenomic analyses testing the concentration of 
polygenic risks for health, behaviour and social problems in chil-
dren growing up in disadvantaged neighbourhoods yielded three 
findings: first, we found little consistent evidence for the concentra-
tion of polygenic risk for obesity or polygenic risk for mental health 
problems in children growing up in disadvantaged neighbourhoods. 
Second, by contrast, we found consistent evidence for the concen-
tration of polygenic risks for teen pregnancy and low achievement. 
The concentration of polygenic risks was mostly explained by chil-
dren’s inheritance of both neighbourhood and polygenic risks from 
their parents. Third, selective mobility may contribute to the con-
centrations of risks. In the neighbourhood mobility analysis that 
followed young people living with their parents during adolescence 
to where they lived as adults nearly two decades later, participants 
with a higher polygenic risk for teen pregnancy and low achieve-
ment exhibited downward neighbourhood mobility, moving to 
more-disadvantaged neighbourhoods across follow-up.

Large investments are being made in neighbourhood-level poli-
cies and programmes intended to improve the health and well-being 
of residents. These investments are based on exciting new findings 
demonstrating causal long-term effects of local neighbourhoods on 
health and possibly economic outcomes for children moving out 
of poverty9–11. The promise of place-based intervention efforts is 
that they can improve, at scale, the lives of residents and, for chil-
dren, break the intergenerational transmission of poverty and lack 
of opportunity. At the same time, GWAS are revealing genetic pre-
dictors of the health outcomes, behaviours and attainments that 
place-based interventions seek to modify. We carried out a study of 
genetic selection into neighbourhoods to test how genes and geog-
raphy combine.

We did not find consistent evidence of genetic selection effects 
into neighbourhoods for obesity and mental health problems. A 
previous Swedish study detected evidence of a gene–neighbour-
hood correlation between the schizophrenia polygenic score and 
a commercial database measure of neighbourhood deprivation 
(r = 0.04, n = ~7,000)28. The magnitude of the association was about 
the same as we observed for the E-Risk twins (r = 0.04) using the 
commercial database ACORN measure. However, this association 
was not replicated in Add Health, in which the association was not 
significant and was in the opposite direction (r = −0.01 to −0.03). 
It is possible that selective non-participation in research related to 
genetic liability for schizophrenia could limit the ability to detect 
these associations in some data sets29,30. Our results nevertheless 
document consistent evidence (across measures and samples) of a 
gene–neighbourhood correlation for GWAS discoveries for age at 
first birth and educational attainment, and less so for GWAS discov-
eries for obesity and schizophrenia.

We found consistent evidence of genetic selection effects into 
neighbourhoods for teen pregnancy, poor educational qualifica-
tions and NEET status. These findings are consistent with recent 
findings in sociology about how neighbourhood residents come 
to be both physically and economically ‘stuck in place’ across gen-
erations31,32. Teen pregnancy and poor outcomes in education and 
the workplace can trap parents and their children in disadvan-
taged neighbourhoods, causing a clustering of individual-level and  

neighbourhood-level risks. This has led to calls for multigen-
erational and multi-level intervention efforts to break the cycle of  
disadvantage. Although our findings show that selection is at 
work for these key outcomes, the effects documented are unlikely 
to be large enough to fully account for neighbourhood gradients. 
Consistent evidence for both selection (from us) and social causa-
tion (in the larger literature) means that policies and interventions 
will need to target resources at both people and place to be effective.

Our findings make three contributions. First, they make a meth-
odological and conceptual contribution by integrating genetics and 
social science in the rapidly developing field of social geography. 
We know that the places where children grow up are associated with 
whether they thrive. The challenge in neighbourhood research is to 
sort out selection from causation. Here, we take a fresh look at this 
classic problem using new information from genomics research. 
DNA sequence differences between people index differences in 
liability to health and social outcomes, and DNA cannot be influ-
enced by neighbourhoods. As the price of generating genetic data 
continues to fall, measurements of these DNA differences can pro-
vide tools to advance social science research into the effects of place.

Second, findings shed light on how genetics and environments 
combine to influence children’s development. Genetics contribute 
to the effects of place by influencing where people choose to live, 
are forced to live or otherwise end up living. For young people from 
E-risk and Add Health, some genetic risks were patterned across 
neighbourhoods, presumably reflecting the children’s inheritance 
of genetics that influenced where their parents were able to live. 
This patterning was apparent for genetics linked to teen pregnancy 
and poor education, but not with genetics linked to mental health 
problems or obesity. One interpretation is that teen pregnancy and 
poor education are more proximate causes of economic circum-
stances that determine where one can live than, for example, obesity. 
Consistent with this interpretation, young people from Add Health 
who carried higher levels of polygenic risk for teen pregnancy and 
poor educational outcomes showed patterns of downward neigh-
bourhood mobility, tending to move to worse-off neighbourhoods 
in young adulthood relative to the neighbourhoods where they grew 
up. By contrast, Add Health participants’ polygenic risk for obesity 
and schizophrenia showed trivial or null associations with their 
neighbourhood mobility. Findings document that, even though the 
risk for highly heritable health problems such as obesity and schizo-
phrenia may be patterned across neighbourhoods, genetic risks for 
these conditions may not be. More broadly, findings highlight that a 
phenotype being heritable does not imply that social risk factors are 
necessarily genetically confounded.

Third, findings provide evidence that many children are grow-
ing up subject to correlated genetic and place-related risks, par-
ticularly for teen pregnancy and attainment failure. The polygenic 
score–neighbourhood correlations that we observed are too small 
to account entirely for neighbourhood effects, but genetic and 
neighbourhood risks may act in combination. Thus, neighbour-
hood interventions can be conceptualized, in part, as breaking up 
gene–environment correlations, lending urgency to the develop-
ment of effective place-based interventions. To this end, genetically 
informed designs may offer opportunities to advance intervention 
research. For example, comparative studies could test whether cor-
relations between genetic and neighbourhood risks vary across cit-
ies governed by different urban planning strategies. Intervention 
studies could also actively incorporate genetic information: trials 
of neighbourhood interventions can improve the precision of their 
treatment-effect estimates by including polygenic score measure-
ments as control variables to account for unmeasured differences 
between participants33.

We acknowledge the limitations of our study. Foremost, our mea-
sures of genetic risk are imprecise. They explain only a fraction of 
the genetic variance in risk estimated from family-based genetic  
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models: the polygenic score for educational attainment explains 
>10% of phenotypic variance, polygenic scores for body mass index 
and schizophrenia explain 6–7% of phenotypic variance, and the age-
at-first-birth polygenic score explains 1% of phenotypic variance15–18, 
whereas heritabilities of these traits and behaviours estimated in 
family-based studies tend to be much higher34. As a consequence, 
our estimates of gene–neighbourhood correlations should be con-
sidered lower-bound estimates. Second, a related limitation is that 
the different polygenic scores had different amounts of power to 
detect associations with neighbourhood risk, with the education 
polygenic score having more power than the others. Nevertheless, 
we had more power for the body mass index and schizophrenia poly-
genic score analyses than we did for the age-at-first-birth polygenic 
score analysis, and yet genetic associations with neighbourhood 
risk were much larger for the age-at-first-birth polygenic score than 
for the body mass index and schizophrenia polygenic scores. This 
pattern of results held in both the E-Risk and Add Health studies. 
This pattern of results was also consistent with a previous analysis 
that used the linkage disequilibrium (LD) score regression method 
to test genetic correlations of an area-level measure of social depri-
vation with health and social outcomes35. Third, the magnitudes of 
observed gene–neighbourhood correlations in our study were small. 
For example, the strongest gene–neighbourhood correlations that 
we observed were for the educational attainment polygenic score 
(r = ~0.17). Based on our analysis, neighbourhood differences in this 
polygenic score between the highest-risk and lowest-risk neighbour-
hoods could account for, at most, only about 15% of the observed 
differences in poor educational qualifications and about 10% of 
the observed differences in NEET status between these neighbour-
hoods (Supplementary Methods). As GWAS sample sizes continue 
to grow, more precise measurements will become available36. More 
predictive polygenic scores could potentially strengthen measured 
gene–neighbourhood correlations and explain increasing fractions 
of neighbourhood gradients in health and social outcomes.

An additional limitation is that E-Risk data come from a single 
birth cohort in a single country, and thus reflect a relatively specific 
geographical and historical context. Findings that polygenic risk 
of teen pregnancy and low educational attainment were correlated 
with neighbourhood disadvantage did replicate in the US-based 
Add Health Study. Add Health neighbourhood risk was measured 
from tract-level US Census data describing broad social and eco-
nomic conditions and is thus less geographically precise than the 
small-area ACORN and ecological-risk assessment data analysed in 
E-Risk. Thus, the Add Health analysis is not a direct replication of 
our E-Risk findings. Instead, the consistent results across two stud-
ies of different populations measured using different methods argue 
for the overall robustness of our findings.

Our analysis in both the E-Risk and Add Health studies was lim-
ited to individuals of European descent. This restriction was neces-
sary to match the ancestry of our analytic sample with the ancestry 
of the samples studied in the GWAS used to calculate polygenic 
scores, which is the recommended approach37. As polygenic scores 
are developed for populations of non-European ancestry, replica-
tion in these populations should be a priority.

Finally and fundamentally, our results cannot establish causal 
relationships between genetics, neighbourhood risk and health, 
behaviour and attainment outcomes. It could be that genetics influ-
ence reproductive behaviour and educational attainment in ways 
that affect neighbourhood mobility. But there are alternative pos-
sibilities. For example, if neighbourhood risks cause teen pregnancy 
and school failure, GWAS of age at first birth and educational attain-
ment could identify genetics that influence exposure to those causal 
neighbourhood risks. If and when large-scale GWAS of neighbour-
hood mobility are conducted, emerging statistical methods, such 
as two-sample Mendelian randomization38,39, may be able to clarify 
this important causal question.

The observation of gene–neighbourhood correlations does not 
suggest that residents in disadvantaged neighbourhoods will not 
benefit from neighbourhood-level interventions. It simply means 
that policy-makers should not overinterpret neighbourhood effects 
in purely causal terms. For example, people observed to live in a 
friendly suburb, remote ranch, quaint village and luxury high-rise 
are not found in those neighbourhoods randomly by accident; peo-
ple end up in such locations selectively. But regardless of the loca-
tion, they all respond to incentives and opportunities. More precise 
quantifications of selection processes that influence where people 
live can help to inform policies and programmes to craft incentives 
and opportunities that promote healthy development for everyone.

Methods
E-Risk. Sample. Participants were members of the E-Risk twin study, which tracks 
the development of a birth cohort of 2,232 British children. The sample was drawn 
from a larger birth register of twins born in England and Wales in 1994–1995 
(ref. 40). Full details about the sample are reported elsewhere41. Briefly, the E-Risk 
sample was constructed in 1999–2000, when 1,116 families (93% of those eligible) 
with same-sex 5-year-old twins participated in home visit assessments. The sample 
includes 56% monozygotic and 44% dizygotic twin pairs; sex is evenly distributed 
within zygosity (49% male). Families were recruited to represent the population of 
families with newborn babies in England and Wales in the 1990s, on the basis of 
residential location throughout England and Wales, and the mother’s age. Teenaged 
mothers with twins were over-selected to replace high-risk families who were 
selectively lost to the register through non-response. Older mothers having twins 
via assisted reproduction were under-selected to avoid an excess of well-educated 
older mothers. These strategies ensured that the study sample represents the full 
range of socioeconomic conditions in Great Britain19.

Follow-up home visits were conducted when the children were 7 years of age 
(98% participation), 10 years of age (96% participation), 12 years of age (96% 
participation) and, in 2012–2014, 18 years of age (93% participation). There were 
no differences between those who did and did not take part at 18 years of age in 
terms of socioeconomic status assessed when the cohort was initially defined 
(χ2 = 0.86, P = 0.65), age-5 IQ scores (t = 0.98, P = 0.33), or age-5 internalizing 
or externalizing behaviour problems (t = 0.40, P = 0.69 and t = 0.41, P = 0.68, 
respectively). Home visits at 5, 7, 10 and 12 years of age included assessments with 
participants as well as their mother; the home visit at 18 years of age included 
interviews only with the twin participants. All interviews at the age-18 assessment 
were conducted after each study participant’s eighteenth birthday. Each twin 
participant was assessed by a different interviewer. The joint Research and 
Development Office of South London and Maudsley and the Institute of Psychiatry 
Research Ethics Committee approved each phase of the study. Parents gave 
informed consent and twins gave assent between 5 and 12 years of age; twins gave 
informed consent at 18 years of age.

Genetic data. We used Illumina HumanOmni Express 12 BeadChip arrays (version 
1.1; Illumina) to assay common SNP variation in the genomes of cohort members. 
We imputed additional SNPs using the IMPUTE2 software (version 2.3.1; https://
mathgen.stats.ox.ac.uk/impute/impute_v2.html)42 and the 1000 Genomes Phase 
3 reference panel43. Imputation was conducted on autosomal SNPs appearing in 
dbSNP (version 140; http://www.ncbi.nlm.nih.gov/SNP/)44 that were ‘called’ in 
more than 98% of the samples. Invariant SNPs were excluded. Pre-phasing and 
imputation were conducted using a 50 million-base pair sliding window. We 
analysed SNPs in Hardy–Weinberg equilibrium (P > 0.01). The resulting genotype 
databases included genotyped SNPs and SNPs imputed with 90% probability of a 
specific genotype among European-descent E-Risk members (n = 1,999 children 
in 1,011 families). The same procedure was used to construct the genetic database 
for study members’ mothers. Genetic data were available for n = 860 mothers of the 
study members in our genetic analysis sample.

Polygenic scoring. We computed polygenic scores for obesity (body mass index), 
schizophrenia, age at first birth and educational attainment from published 
GWAS results15–18. We computed these polygenic scores because the GWAS on 
which they are based are among the largest and most comprehensive available and 
their target phenotypes are established as having strong geographical gradients 
in risk. For example, in the case of schizophrenia, there is a long-running debate 
about hypotheses of social causation, in which ecological risks contribute 
to schizophrenia pathogenesis, and social drift, in which genetic liability to 
schizophrenia causes downward social mobility45,46.

Polygenic scoring was conducted following the method described by 
Dudbridge20 using the PRSice software47. Briefly, SNPs reported in GWAS results 
were matched with SNPs in the E-Risk database. For each SNP, the count of 
phenotype-associated alleles (that is, alleles associated with a higher body mass 
index, increased risk of schizophrenia, younger age at first birth or less educational 
attainment, depending on the score being calculated) was weighted according to 
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the effect estimated in the GWAS. Weighted counts were averaged across SNPs to 
compute polygenic scores. We used all matched SNPs to compute polygenic scores 
irrespective of nominal significance in the GWAS.

Polygenic score analysis may be biased by population stratification, the non-
random patterning of allele frequencies across ancestry groups37,48. To address 
residual population stratification within the members of European descent of 
the E-Risk sample, we conducted principal component analysis49. We computed 
principal components from the genome-wide SNP data with the PLINK software50 
using the command ‘pca’. One member of each twin pair was selected at random 
from each family for this analysis. SNP loadings for principal components were 
applied to co-twin genetic data to compute principal component values for the full 
sample. We residualized polygenic scores for the first ten principal components 
estimated from the genome-wide SNP data51 and standardized residuals to have 
mean = 0 and s.d. = 1 for analysis.

Neighbourhood disadvantage. We characterized the neighbourhoods where E-Risk 
study members grew up using two approaches. The first approach characterized 
the neighbourhoods as they are seen by businesses and the public sector, using a 
consumer classification system called ACORN. The second approach characterized 
neighbourhoods as they are seen by social scientists and public health researchers, 
using ecological-risk assessment methods.

Neighbourhood disadvantage measured by consumer classification. We used 
a geodemographic classification system, ACORN, developed as a tool for 
businesses interested in market segmentation by CACI (CACI, http://www.caci.
co.uk/). This is a proprietary algorithm that is sold to businesses, but which CACI 
made available to our group for research purposes. ACORN classifications were 
derived from the analysis of census and consumer research databases. ACORN 
classifies neighbourhoods, in order of least disadvantaged to most disadvantaged, 
as ‘wealthy achievers’, ‘urban prosperity’, ‘comfortably off ’, ‘moderate means’ 
or ‘hard pressed’. For analysis, we combined neighbourhoods classified in the 
‘urban prosperity’ and ‘comfortably off ’ categories because very few children 
lived in ‘urban prosperity’ neighbourhoods. (Nationally, fewer children live in 
neighbourhoods characterized by ‘urban prosperity’.) We obtained ACORN 
classifications for the output areas where E-Risk families lived19. Output areas are 
the smallest unit at which UK Census data are provided and they reflect relatively 
small geospatial units of about 100–125 households. Households were classified 
based on street address at the time of the age-5, age-7, age-10 and age-12 in-home 
visits. We assigned children the average neighbourhood classification across these 
four measurements. ACORN classifications were available for n = 1,993 children in 
1,008 families in the genetic sample.

Neighbourhood disadvantage measured by ecological-risk assessment. Ecological-
risk assessment was conducted by combining information from four independent 
sources of data: geodemographic data from local governments, official crime data 
from the UK police, a Google Street View-based systematic social observation, and 
surveys of neighbourhood residents conducted by the E-Risk investigators when 
the E-Risk children were 13–14 years of age. These data sources are described in 
detail in the Supplementary Methods.

We used these four data sources to measure the neighbourhood ecological risk 
in four domains: deprivation, dilapidation, disconnection and danger. Deprivation 
was measured with the Department of Community and Local Government Index 
of Multiple Deprivation. Dilapidation was measured from resident ratings of 
problems in their neighbourhood (for example, litter, vandalized public spaces and 
vacant storefronts) and independent raters’ assessments of these same problems 
based on the ‘virtual walk-through’ using Google Street View. Disconnection was 
measured from resident surveys assessing neighbourhood collective efficacy and 
social connectedness. Neighbourhood collective efficacy was assessed via the 
resident survey using a previously validated ten-item measure of social control 
and social cohesion52. Residents were asked about the likelihood that their 
neighbours could be counted on to intervene in various ways if, for example: 
‘children were skipping school and hanging out on a street corner’ or ‘children 
were spray-painting graffiti on a local building’. They were also asked how strongly 
they agreed that, for example: ‘people around here are willing to help their 
neighbours,’ or ‘this is a close-knit neighbourhood’ (item responses: 0–4). Social 
connectedness was assessed based on indicators of intergenerational closure (‘if 
any of your neighbours’ children did anything that upset you would you feel that 
you could speak to their parents about it?’), reciprocated exchange (for example, 
‘would you be happy to leave your keys with a neighbour if you went away on 
holiday?’) and friendship ties (for example, ‘do you have any close friends that live 
in your neighbourhood’) among neighbours developed in previous research53. 
Dangerousness was measured from police records of crime incidence, from 
neighbourhood residents’ ratings of how much they feared for their safety and 
whether they had been victimized in their neighbourhood, and from independent 
raters’ assessments of neighbourhood safety based on the ‘virtual walk-through’ 
using Google Street View (Fig. 2b).

For each of the four domains, we constructed a measure of ecological risk as 
follows. First, variables with skewed distribution were log transformed. Second, 
values were standardized to have mean = 50 and s.d. = 10. (For domains in which 

multiple resident survey or systematic social observation measures were available, 
we combined values within the measurement method before standardizing.) 
Finally, scores were averaged across measurement method within each domain. 
The resulting scales of deprivation, dilapidation, disconnection and danger were 
approximately normally distributed (Fig. 2b). Neighbourhoods’ ecological-risk 
levels on these four measures were correlated (Pearson’s r = 0.4–0.7; Fig. 2b). We 
computed the composite ecological-risk index by summing values across the four 
risk domains. Values were pro-rated for families with data on at least three of the 
four domains. Ecological-risk index values were available for n = 1,954 children in 
987 families in the genetic sample.

Phenotypes. We selected phenotypes for analysis that represented substantial public 
health and economic burden, had been linked with neighbourhood risk in previous 
studies, were prevalent among 18-year olds in the United Kingdom at the time data 
were collected and had been subject to large-scale GWAS meta-analyses: obesity, 
mental health problems, teen pregnancy and poor educational outcome.

Obesity. Trained research workers took anthropometric measurements of study 
members when they were 18 years of age. Body mass index was computed as 
weight in kilograms over squared height in metres. The waist/hip ratio was 
calculated by dividing waist circumference by hip circumference. We defined 
obesity using the US Centers for Disease Control and Prevention threshold of 
body mass index > 30 and the World Health Organization recommendation of a 
waist/hip ratio of >0.90 for men and >0.85 for women54. Of the analysis sample, 
21% met at least one of these criteria, similar to the prevalence for 16–24-year olds 
in the United Kingdom55.

Mental health problems. Our measure of mental health problems is a general 
factor of psychopathology, the ‘p-factor,’ derived from confirmatory factor analysis 
of symptom-level psychopathology data collected at 18 years of age, when E-Risk 
participants were assessed in private interviews about alcohol dependence, 
tobacco dependence, cannabis dependence, conduct disorder, attention-deficit 
hyperactivity disorder, depression, generalized anxiety disorder, post-traumatic 
stress disorder, eating disorder and thought/psychotic disorders56. The ‘p-factor’ 
indexes liability to develop a wide spectrum of mental health problems57. We 
classified E-Risk study members reporting psychiatric symptoms 1 s.d. or more 
above the cohort norm as having mental health problems. Of the analysis sample, 
17% met this criterion.

Teen pregnancy. Getting pregnant (for women) and getting someone pregnant (for 
men) was assessed as part of a computer-assisted interview about reproductive 
behaviour at the age-18 interview. Of the analysis sample, 8% (6% of men and 9% 
of women) reported a teen pregnancy.

Poor educational qualifications. Poor educational qualification was assessed 
by whether participants did not obtain or scored a low average grade (grade 
D–G) on their General Certificate of Secondary Education (GCSE). GSCEs are a 
standardized examination taken at the end of compulsory education at 16 years of 
age. Of the analysis sample, 23% met criteria for poor educational qualifications.

NEET. NEET status was assessed at in-person interviews58. As of the age-18 
interview, 12% of study members were NEET, similar to the UK population (as 
of 2010, about 14% of 19-year olds in the UK reported being NEET for at least 
1 year59.

Add Health. Sample. Add Health is an ongoing, nationally representative 
longitudinal study of the social, behavioural and biological linkages in health 
and developmental trajectories from early adolescence into adulthood. The 
cohort was drawn from a probability sample of 144 middle and high schools and 
is representative of American adolescents in grades 7–12 in 1994–1995. Since 
the start of the project, participants have been interviewed in-home at four data 
collection waves (numbered I–IV), most recently in 2007–2008, when 15,701 study 
members took part25.

Genotyping. At the wave IV interview in 2007–2008, saliva and capillary whole 
blood were collected from respondents. Of the 15,701 individuals interviewed, 
15,159 consented to genotyping and 12,254 agreed to genetic data archiving. 
DNA extraction and genotyping were conducted on this archive sample using two 
platforms (Illumina Omni1 and Omni2.5). After quality controls, genotype data 
were available for 9,975 individuals. We analysed data from n = 5,690 participants 
with genetically European ancestry. Imputation was conducted on SNPs called 
in more than 98% of the samples with a minor allele frequency of >1% using the 
Michigan Imputation Server (http://imputationserver.readthedocs.io/en/latest/
pipeline/) and the Haplotype Reference Consortium reference panel60.

Polygenic scoring. We computed polygenic scores for body mass index, 
schizophrenia and age at first birth following the method described by Dudbridge20 
according to the procedure used in previous studies61. Briefly, SNPs in the genotype 
database were matched to published GWAS results16,17. For each of these SNPs, a 
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loading was calculated as the number of phenotype-associated alleles multiplied by 
the effect size estimated in the original GWAS. Loadings were then averaged across 
the SNP set to calculate the polygenic score. The Add Health study was included 
in the most recent GWAS of educational attainment18. Thus, we obtained the 
polygenic score for educational attainment directly from the Social Science Genetic 
Association Consortium (SSGAC). The SSGAC computed the score according to 
the methods described in the GWAS article based on a GWAS that did not include 
any Add Health samples.

To account for any residual population stratification within the European-
descent analysis sample, we residualized polygenic scores for the first 10 principal 
components estimated from the genome-wide SNP data51 and standardized 
residuals to have mean = 0 and s.d. = 1 to compute polygenic scores for analysis. 
Principal components for the Add Health European-descent sample were provided 
by the SSGAC.

Neighbourhood characteristics. We measured neighbourhood-level socioeconomic 
disadvantage using Census-tract-level data linked to Add Health participants’ 
addresses when they were first interviewed in 1994–1995 and when they were 
most recently followed-up in 2007–2008. Participants’ addresses in 1994–1995 
were linked with tract-level data from the 1990 Decennial Census62. Participants’ 
addresses in 2007–2008 were linked with tract-level data from the 2005–2009 
panels of the American Community Survey63. For each tract, we coded the 
proportions of female-headed households, individuals living below the poverty 
threshold, individuals receiving public assistance, adults with less than a high 
school education and adults who were unemployed using the following system: 
we computed tract deciles based on the full set of tracts from which Add Health 
participants were sampled at wave I. We then scored each tract on a scale of 1–10 
corresponding to the wave I decile containing the tract’s value on the variable. 
We calculated neighbourhood deprivation as the sum of decile scores across the 5 
measures, resulting in a score ranging from 0 to 50. Values were Z-transformed to 
have mean = 0 and s.d. = 1 for analysis.

Add Health analysis included all European-descent Add Health participants 
with available genetic and neighbourhood data (n = 5,325).

Statistical analysis. We analysed continuous dependent variables using linear 
regression models. We analysed dichotomous dependent variables using 
Poisson regression models to estimate RRs. In models testing polygenic and 
neighbourhood risks for health and social problems, health and social problems 
were specified as the dependent variables and polygenic and neighbourhood risks 
were specified as predictor variables. We tested the statistical independence of 
polygenic risk information from family history risk information using multivariate 
regression with family history measures included as covariates alongside polygenic 
scores. In models testing for association between polygenic and neighbourhood 
risks, polygenic scores were specified as dependent variables and neighbourhood 
risks were specified as predictor variables. We tested whether associations between 
children’s neighbourhood risks and polygenic risks were correlated because both 
were inherited from their parents using multivariate regression, with the mother’s 
polygenic scores included as covariates alongside neighbourhood risk measures. 
We tested polygenic risk associations with neighbourhood mobility using the 
mobility model from previous work64; participants’ adulthood neighbourhood 
disadvantage scores were regressed on their polygenic scores, their childhood 
neighbourhood disadvantage scores and covariates. For all models, we accounted 
for the non-independence of observations of siblings within families by clustering 
standard errors at the family level. For models testing polygenic score associations 
with neighbourhood conditions in the E-Risk data, only one member of each 
monozygotic twin pair was included in analysis. (For these models, monozygotic 
twins would have identical values for predictors and outcomes.) All models were 
adjusted for sex. Add Health models were adjusted for year of birth. (Year of birth 
did not vary in the E-Risk cohort.)

We conducted post-hoc power analyses to provide context for interpretation of 
the associations that we observed. We conducted power analysis using the ‘power’ 
command in the Stata software65. Both the E-Risk and Add Health samples had 
>80% power to detect associations with effect size r = 0.1 in all analyses. Power 
analysis for tests of polygenic score associations with neighbourhood risk is shown 
in Supplementary Fig. 3. We conducted power analysis for GCTA using the online 
power calculator provided by Hemani and Yang (http://cnsgenomics.com/shiny/
gctaPower/). In the Add Health sample, power was >80% to detect SNP heritability 
estimates of ≥0.2. We did not conduct GCTA analysis in the E-Risk sample 
because power calculations suggested that only SNP heritabilities of >0.9 could be 
distinguished from 0 in that sample.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The E-Risk data set reported in the current article is not publicly available owing to a 
lack of informed consent and ethical approval, but is available on request by qualified 
scientists. Requests require a concept paper describing the purpose of data access, 
ethical approval at the applicant’s institution and provision for secure data access. We 

offer secure access on the Duke University and King’s College London campuses. All 
data analysis scripts and results files are available for review. The Add Health data can 
be accessed through the Add Health study. Details are available through the Carolina 
Population Center as described here: https://www.cpc.unc.edu/projects/addhealth/
documentation. Genotype data are available through dbGaP.

Code availability
All data analysis scripts and results files are available for review.
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Study description Quantitative analysis of data collected in prospective longitudinal studies. 

Research sample Data were drawn from two studies. The Environmental Risk (E-Risk) Longitudinal Twin Study tracks the development of a birth cohort of 
2,232 British children. The sample was drawn from a larger birth register of twins born in England and Wales in 1994–1995 41. Full 
details about the sample are reported elsewhere (manuscript ref 42). Briefly, the E-Risk sample was constructed in 1999–2000, when 
1,116 families (93% of those eligible) with same-sex 5-year-old twins participated in home-visit assessments. The sample includes 56% 
monozygotic and 44% dizygotic twin pairs; sex is evenly distributed within zygosity (49% male). Families were recruited to represent the 
UK population of families with newborns in the 1990s, on the basis of residential location throughout England and Wales, and mother’s 
age. Teenaged mothers with twins were over-selected to replace high-risk families who were selectively lost to the register through 
nonresponse. Older mothers having twins via assisted reproduction were under-selected to avoid an excess of well-educated older 
mothers.  These strategies ensured that the study sample represents the full range of socioeconomic conditions in Great Britain 
(manuscript ref 19). 
           Follow-up home visits were conducted when the children were aged 7 (98% participation), 10 (96% participation), 12 (96% 
participation), and, in 2012–2014, 18 years (93% participation). There were no differences between those who did and did not take part 
at age 18 in terms of socioeconomic status (SES) assessed when the cohort was initially defined (χ2 = 0.86, p = .65), age- 5 IQ scores (t = 
0.98, p = .33), or age- 5 internalizing or externalizing behavior problems (t = 0.40, p = .69 and t = 0.41, p = .68, respectively). Home visits 
at ages 5, 7, 10, and 12 years included assessments with participants as well as their mother; the home visit at age 18 included interviews 
only with the twin participants. All interviews at the age-18 assessment were conducted after the 18th birthday. Each twin participant 
was assessed by a different interviewer. The joint Research and Development Office of South London and Maudsley and the Institute of 
Psychiatry Research Ethics Committee approved each phase of the study. Parents gave informed consent and twins gave assent between 
ages 5 and 12 years; twins gave informed consent at age 18 years.  
 
The National Longitudinal Study of Adolescent to Adult Health (Add Health) is an ongoing, nationally-representative longitudinal study of 
the social, behavioral, and biological linkages in health and developmental trajectories from early adolescence into adulthood. The cohort 
was drawn from a probability sample of 144 middle and high schools and is representative of American adolescents in grades 7-12 in 
1994-1995. Since the start of the project, participants have been interviewed in home at four data collection waves (numbered I-IV), 
most recently in 2007-2008, when 15,701 Study members took part (see ref 25 of the article for details). 

Sampling strategy We analyzed data from all E-Risk and Add Health participants for whom genetic and neighborhood data were available. 

Data collection E-Risk data were collected through in-person interviews, including anthropometric assessments, and blood draws for DNA collection. Add 
Health data were collected through in-person interviews and saliva DNA collection.  

Timing E-Risk data analyzed in this article were collected during 1999-2014. Add Health data analyzed in this article were collected during 
1994-2008.

Data exclusions We analyzed data from European-descent participants with available genetic and neighborhood data. 

Non-participation NA

Randomization NA

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above. 

Recruitment Paper describes secondary data analysis

Ethics oversight Ethics oversight for the research reported in this article was provided by Institutional Review Boards at Duke University and the 
University of North Carolina at Chapel Hill. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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