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Striving toward translation: strategies for reliable

MRl measurement

Maxwell L. Elliott,"* Annchen R. Knodt, ' and Ahmad R. Hariri’

fMRI has considerable potential as a translational tool for understanding risk,
prioritizing interventions, and improving the treatment of brain disorders.
However, recent studies have found that many of the most widely used fMRI
measures have low reliability, undermining this potential. Here, we argue that
many fMRI measures are unreliable because they were designed to identify
group effects, not to precisely quantify individual differences. We then highlight
four emerging strategies [extended aggregation, reliability modeling, multi-
echo fMRI (ME-fMRI), and stimulus design] that build on established psychometric
properties to generate more precise and reliable fMRI measures. By adopting such
strategies to improve reliability, we are optimistic that fMRI can fulfill its potential as
a clinical tool.

Can we reliably measure individual differences in brain function?

Cognitive neuroscience has revolutionized our understanding of how the brain supports
behavioral functions ranging from basic sensory to complex cognitive processes. Based on
these fundamental insights into brain and behavior, an emerging program of translational neuro-
science seeks to identify individual differences in these patterns and, in so doing, inform the
development of clinical biomarkers that can be used to predict disease risk, prioritize interven-
tions, and improve treatment. Central to these efforts is fMRI, as it affords the noninvasive
measurement of brain activity in behaving humans across the lifespan. In recent years, fMRI
studies of individual differences in clinically meaningful domains have proliferated, alongside ex-
pectations for clinical applications [1]. This expansion of individual-differences research using
fMRI has triggered questions about its readiness to fulfill the measurement properties necessary
for clinical translation (see Glossary), central among which is reliability.

Psychometrics has long established that reliability is the necessary first step toward validity. For
example, to investigate how brain function makes a super-ager resilient in the face of neurodegen-
eration or to tailor brain stimulation to an individual’s unique functional topography, we must first
be able to reliably measure idiosyncrasies in brain function. To establish reliability, repeated mea-
surements of brain function must produce converging estimates in the absence of significant
changes in the individual (e.g., disease progression, exposure to treatment). Recently, we reported
that many of the most widely adopted task-fMRI measures of brain activity during clinically relevant
behavior (e.g., episodic memory, executive control) have low test-retest reliability and are, there-
fore, unable to serve as clinical biomarkers in their current state [2]. Results from similar studies
have also pointed to low reliability in other widely used fMRI measures including functional connec-
tivity measures generated from short scans [3-5]. Fortunately, methods to improve reliability have
long been developed and employed in the allied field of psychology (e.g., personality or cognitive
assessments). However, these methods have yet to be fully adopted in fMRI research.

In this review, we begin by describing historical trends that contributed to the widespread
use of unreliable fMRI measures in individual-differences research. Then we highlight four
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Highlights

Since its introduction in 1992, fMRI has
rapidly matured to become a powerful
tool in neuroscience, allowing re-
searchers to noninvasively map the
functional organization of the average
human brain and probe the brain
bases of behaviors from the simple to
the complex.

However, the translation of fMRI to
clinical applications as well as the study
of individual differences in brain function
has been limited to date. This limitation,
in part, reflects the inadequate reliability
of many of the most commonly used
fMRI measures. Reliability is a prerequi-
site for the valid measurement of brain
function in individuals.

We highlight four emerging strategies,
each with roots in psychometrics, that
have the potential to improve measure-
ment reliability, thereby advancing the
potential clinical utility of fMIRI: () extended
aggregation; (i) reliability modeling;
(i) multi-echo fMRI; and (iv) stimulus
design.
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emerging strategies (extended aggregation, reliability modeling, ME-fMRI, and stimulus
design), each with roots in psychometrics, that could enable researchers to reliably measure
individual differences in brain function with fMRI (Figure 1, Key figure). We conclude that, de-
spite several false starts and dead ends, there is a bright future for a cumulative, translational
neuroscience of individual differences using fMRI, but that for this future to be realized we
must upend status quo approaches in favor of psychometrically sound principles for measure
development.

A very brief history of individual-differences research with fMRI

The 1990s

In March 1992, the first studies to map human brain function with MRI were sequentially re-
ported by Kwong et al. and Ogawa et a/. [6,7]. In each study, patterns of activity in the visual
cortex were measured using the blood-oxygen level-dependent (BOLD) signal by
implementing a within-subject design to contrast activity between alternating blocks of dark-
ness and visual stimulation. These simple yet powerful experiments demonstrated the potential
of fMRI to noninvasively measure human brain activity, sparking a flurry of research further
‘mapping’ functions of the human brain. As these early experiments were typically designed
for cognitive neuroscience research and required costly, technologically demanding infrastruc-
tures, they often relied on two critical design features: experimental manipulation and group av-
eraging. Experimental manipulation was achieved by presenting tightly controlled stimuli in
structured patterns so that the BOLD signal for a condition of interest could be experimentally
contrasted with the BOLD signal during a baseline condition. By carefully constraining stimulus
features (e.g., visual angle, size, instructions) and timing (e.g., block and event-related
presentations), researchers could find patterns of brain activation that reflected specific, exper-
imentally contrasted differences in task conditions (e.g., working memory versus passive view-
ing of visual objects). In tandem, group averaging was utilized to reduce the inherent noisiness
of individual-level BOLD data to elicit robust group effects between conditions of interest,
thereby allowing inferences about the functions of the ‘average human brain’. Tasks were ex-
plicitly designed and optimized to consistently evoke within-subject effects using experimental
manipulation and group averaging. Using these core tools, the first decade of fMRI started with
a technological trigger that was followed by iterative development, widespread adoption, and
increasing expectations for the translation of fMRI into the advancement of our understanding
and treatment of brain disorders ranging from depression and schizophrenia to Alzheimer’s
disease (Figure 2).

The 2000s

During its second decade, fMRI expanded in both breadth and depth. More powerful scanners
provided measures of brain activity with ever-greater spatial and temporal resolution [8]. Simul-
taneously, fMRI became increasingly employed in research with unique populations
(e.g., children, brain disorders). It was during this period of expansion that some investigators
began adopting fMRI tasks, originally developed to elicit robust within-subject effects, to probe
between-subjects individual differences. Due to the high cost of fMRI and the infancy of
the technology, these investigations of individual differences were often a secondary aim of
studies, opportunistically explored after the primary experimental cognitive neuroscience ques-
tions [9]. The logic of this approach was straightforward and alluring: if an fMRI task experimen-
tally elicits activation in a targeted brain region during a psychological process of interest,
variability in the magnitude of that activity between individuals may drive variability in related
behaviors and clinical endpoints. In this way, investigators attempted to simultaneously map
behaviorally relevant brain activation and associate variability in this activation with individual
differences in behavior. For example, work by us and others demonstrated that, when
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Glossary

Between-subjects variance:
variability in a measure due to differences
between individuals (i.e., individual
differences). In fMRI, this is often
represented by individual differences in
the magnitude of activation or functional
connectivity.

Classical test theory: an early
psychometric framework to improve the
reliability of tests by conceptualizing
observed scores from a measurement
device as the sum of error score variation
and true score variation.

Clinical translation: the process of
using scientific insight to inform the
diagnosis, treatment, and prevention of
clinical disorders. fMRI could one day be
more routinely used to assess risk and
prioritize treatments for brain disorders in
individuals.

Ecological validity: the extent to which
an experimental paradigm generalizes to
the intended setting of interest. In MR,
ecological validity increases as stimuli
and tasks better capture real-world
experiences and challenges faced by
individuals (e.g., naturalistic stimuli).
Error score: the part of ameasurement
that is driven by random noise,
measurement error, artifacts, and bias.
Functional topography: the spatial
layout of brain functions and network
organization across the cortex that has
both general properties (e.g., the
location of primary sensory cortex) and
highly individualized pattems (see
Figure 3 in the main text).
Generalizability theory: a
psychometric framework that expands
classical test theory with tools to
disambiguate the multitude of sources of
true score and error score variance. In
MR, this allows researchers to measure
variance that is driven by sources
including the scanner, the time of day,
and the task.

Item-response theory: a
psychometric framework that expands
on classical test theory by providing
tools to assess, design, and select
individual items for a test instead of
focusing on the observed scores that
are generated from the test itself.
Latent variable: a variable that is not
directly observed but instead is inferred
from other measurements.

Measure: a standard unit used to
express the size, amount, or degree of
something. Reliability is a property of a
measure and will thus vary as the
properties of a measure vary. In fMRI,
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averaged across participants, the amygdala exhibits increased activity when participants
view threat-related facial expressions compared with neutral visual stimuli [10,11]. In response
to the extensive animal literature demonstrating the critical importance of the amygdala in fear
learning and stress-related dysfunction, we and others hypothesized that variability in the
magnitude of this threat-related amygdala activity would map onto individual differences in
related behaviors such as anxiety and depression. These links were indeed reported alongside
many similar studies of individual differences across a wide variety of fMRI tasks, behavioral
traits, and clinical symptoms [12,13].

The 2010s

In the 2010s, two emerging trends simultaneously attracted more attention and scrutiny to trans-
lational fMRI. First, spurred by the maturation and promise of fMRI, large consortium studies
(e.g., the Human Connectome Project [14], the UK Biobank [15]) were founded with the explicit
goal of using fMRI tasks from experimental cognitive neuroscience to measure individual differ-
ences in brain function. With large samples and broad phenotyping, these studies created an
open-access canvas for fIMRI researchers to test the generalizability, replicability, and reliability
of individual-differences findings from prior work in small samples. Second, amid the emerging
replication crisis in psychology [16,17], a wave of studies found critical limitations in mainstream
fMRI practices, calling into question many individual-differences findings. Among these, re-
searchers noted that statistical circularity was common in fMRI analyses, leading to inflated effect
sizes [18]. Statistical methods for mapping brain activity were also found to be too liberal in deter-
mining statistical significance [19] and widely implemented statistical approaches to generalize
from experiments to the ‘real world’ were found to be inadequate [20,21]. Relatedly, others
noted that the small sample sizes of most fMRI studies (1 <100) left them underpowered to detect
realistic, uninflated effect sizes [22,23]. Furthermore, investigators discovered that many fMRI
findings were confounded by group differences in head-motion and physiological artifacts during
scanning [24,25]. Finally, our group and others found that many of the most commonly used fMRI
measures had low test-retest reliability [2,3,5,26], which fundamentally undermines a measure’s
ability to index individual differences or serve as a clinical biomarker. Collectively, these findings
highlighted previously underappreciated limitations of fMRI research that called into question
the ability of many fMRI measures to validly measure individual differences using status quo
methodologies.

The present

These observations have already sparked methodological innovations to directly address many
of these limitations, including more accurate methods for statistical inference, larger samples,
multivariate modeling to boost reliability, motion censoring, and advanced data-processing tech-
niques [27-34]. However, reliance on short scans (i.e., 5-10 min) in small samples (n <100) as
well as rigid stimulus control and group averaging continue to limit the ability of fMRI to reliably
measure individual differences in brain function that represent interpretable and tractable
mechanisms of risk, pathophysiology, and treatment response. Even with advanced approaches
for artifact reduction and statistical inferences, commonly used fMRI methods often generate
unreliable measures. This unreliability thus continues to represent a fundamental threat to our
ability to realize a rigorous translational neuroscience of individual differences. Given that reliability
is a minimum, necessary prerequisite for valid individual-differences research, a growing contin-
gent of fMRI researchers have sought to build a new framework for translational neuroscience
by asking a fundamental question: under what conditions can fMRI generate reliable,
individual-specific measures of brain function with sufficient precision to inform clinical practice?
We next highlight four complementary strategies that have emerged in response to this question,
as well as the psychometric principles that underlie their utility.
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each combination of task length,
stimulus type, task demands, etc.
generates different measures with
different reliabilities.

Naturalistic stimuli: experimental
stimuli that are designed to approximate
the rich complexity of everyday
experience as opposed to the rigidly
controlled stimuli that are common in
experimental cognitive neuroscience. In
MRI, naturalistic stimuli can include
complex audio (e.g., speeches, stories)
and visual (i.e., pictures and movies)
modalities.

Psychometrics: a specialist field
focused on developing and improving
the measurement of psychological
constructs such as personality and
cognitive ability.

Reliability: the consistency of a
measure when repeatedly assessed
under similar conditions. Low reliability
statistically limits the ability to detect
associations between fMRI
measurements and outcome measures
(e.g., schizophrenia status, working
memory capacity).

True score: the targeted part of a
measurement that is free of noise, error,
contamination, or bias.

Within-subject variance: variability in
a measure within an individual due to
different conditions. In fMRI, this is often
represented in differences in the pattern
of activation between task and control
conditions.
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Key figure
Emerging strategies to generate more reliable fMRI measures
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Figure 1. A typical fMRI study generates measures of activation or functional connectivity by averaging over time (often 5-10 min of data). For example, black-and-white
photos of facial expressions may be shown in blocks. Then, a single regressor is fitted to all face blocks to generate an average estimate of brain activation for each
individual. Many of the most commonly used activation and functional connectivity measures from such short, ‘typical’ fMRI studies are unreliable (represented by a
wide error variability around the true score). The reliability of fMRI measures can be dramatically improved by extended aggregation of hours, instead of minutes, of

(Figure legend continued at the bottom of the next page.)
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Figure 2. A timeline of fMRI research. A highly select list of events that have helped to shape the current state of fMRI research on individual differences and clinical
translation [2,16,18,19,24,100]. Blue shading represents the windows of data collection for the Human Connectome and UK Biobank studies. In addition, the rise of
individual differences and biomarker research with fMRI in the scientific literature is plotted, in pink, along with fMRI studies that mention reliability, in red. While this is a
simplification of fMRI history, it is clear that the number of publications using fMRI to investigate between-subjects questions rose rapidly in the two decades following
its origin before plateauing, while fMRI studies that consider reliability have constituted a smaller fraction of fMRI studies. We have plotted the normalized proportion
(search results as a fraction of all PubMed citations in that year) of PubMed search results per year from 1990 to 2020, using esperr.github.io/pubmed-by-year to
account for the fact that there has been a rapid rise in the overall number of scientific publications throughout the past century.

Building a reliable neuroscience of individual differences

Reliability can be improved through extended aggregation

The BOLD signal is surrounded by noise originating from thermal, physiological (e.g., motion,
respiration), and miscellaneous non-physiological (e.g., scanner drift) sources [35] and represents
only a small fraction of the variance in fMRI data, on the order of 5-20% [35]. To tackle the challenge
of isolating the subset of BOLD variance driven by reliable individual differences, a growing
contingent of ‘precision fMRI” (pfMRI) research has adopted a tried-and-true principle from
classical test theory: collect more data per person. Reliability tends to increase as assessment
length increases because there are more opportunities for random, unstructured error score var-
iability to cancel itself out. When this happens, true score variation constitutes a larger portion of
the measurement, resulting in higher reliability. For example, single-item measures are often dom-
inated by noise and item-specific variance that cancels itself out as additional items are added and
an aggregate score across many items is used. Typically, in psychometrics, ‘assessment length’
refers to the number of items on a questionnaire or survey; however, the same principles apply
to fMRI scan length. Across a wide variety of cohorts, scanners, and study designs, it has been

data for each individual. These measures are far more precise and reliable because random error score variability cancels out over more trials (represented by the precise
density plot around the true score). Reliability modeling can improve reliability by separating stable variability, which is consistent across multiple measurements (green
distribution), from error variance (gray distribution), which is transient. Multi-echo fMRI improves reliability by utilizing multiple echoes to separate non-blood-oxygen level-
dependent (BOLD) error variability (gray distribution) from the BOLD signal of interest (green distribution). Finally, the reliability of fMRI measures can be improved through
stimulus design (i.e., designing stimuli to evoke more reliable between-subjects variance). For example, the stimuli chosen here are colored, visually striking, emotionally
rich images that are more complex and relevant to everyday life (i.e., naturalistic and ecologically valid) than the tightly controlled black-and-white photographs of
faces shown for a typical fMRI study. Such stimuli could be static images or dynamic movies selected based on their ability to generate reliable individual differences.
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shown that the reliability of fMRI measures tends to increase as scan length increases [3-5,36,37].
lllustrating this point, reliability gains are particularly pronounced when data fromn multiple scan ses-
sions on different days are combined, suggesting that unwanted variance due to transient factors
like time of day, head positioning, wakefulness, and scanner effects often obscure stable individual
differences hidden within measures from short, single-session scans [38,39]. By collecting many
hours of data from a small number of subjects (Figure 3), pfMRI studies have further demonstrated
that reliable, individual-specific signatures are present in the spatial organization of brain networks
as well as their temporal structure and timescale [36,37,40-43]. Furthermore, pfMRI has helped to
uncover new cortical networks that were previously obscured by group averaging [43-45] and
begun to move toward clinical applications in the guidance of transcranial magnetic stimulation
[46,47], the detection of recovery from traumatic brain injury [48], and the measurement of
individual-specific cortical reorganization [49,50].

MSCO01 to MSCO1 MSC06 to MSCO1

MSCAVG to MSC01

Trends in Cognitive Sciences
Figure 3. Precision fMRI can reveal reliable, individual-specific features of brain function. By collecting hours of
data from each individual, the Midnight Scan Club (MSC) and other ‘deep-phenotyping’ studies have demonstrated that
fMRI can resolve highly detailed individual-specific patterns of brain function that are lost during group averaging. (A) With
enough data, precise alignment can be identified between the boundaries of a retrosplenial functional connectivity network
(white outline) and a map of task activation in the retrosplenial cortex of a single MSC participant (i.e., MSC0O1 to MSCO01).
Critically, this alignment is individual specific and thus does not hold when the same functional connectivity network from a
different individual (MSCO06) is mapped onto the task activation of MSCO1 (i.e., MSC06 to MSCO01). Furthermore, the
group-average functional connectivity map also maps poorly onto the task activation of MSCO1 (i.e., MSCAVG to
MSCO01). (B) Similarly, the hand (in cyan) and face (in orange) functional connectivity networks can be mapped onto hand
and face activation maps in the motor cortex that are highly specific to an individual and obscured by group averaging.
Such precision fMRI (pfMRI) reveals that precise, individual-specific estimates of individual differences in brain function are
possible but often missed when unreliable measures and group averaging are used. Adapted, with permission, from [41].
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Emerging findings from pfMRI indicate that, with enough data, idiosyncratic functional organization
may be the rule, not the exception [36]. This suggests that the traditional use of short fMRI scans
and group averaging is holding back many translational neuroscience efforts because individual dif-
ferences are obscured underneath a sea of unaccounted-for variability and noise. However, the cur-
rent pfMRI methodology requires many hours of data from each individual to achieve high levels of
precision [36,37]. In many anatomical targets for translational neuroscience (e.g., amygdala, accum-
bens, orbitofrontal cortex), signal dropout compounds unreliability, requiring even more data
[51-54]. Therefore, the participant burden of pfMRI is high for most developmental and clinical sam-
ples for whom it is particularly challenging to lie still in a scanner for hours [24,55]. Thus, in its present
form, pfMRI has not been widely pursued in population neuroscience efforts, which will be critical in
realizing the broad translational value of fMRI [36,56,57]. However, to date, pfMRI has largely
achieved greater reliability through the relatively crude approach of using aggregation to allow un-
structured variance to cancel itself out over time [58]. To the extent that we understand the genera-
tive source of the true score variability that we want to measure (i.e., BOLD signal) and the error score
variability that we want to remove (i.e., noise), alternative strategies may be able to more efficiently
achieve precise and reliable measurement with shorter scans and lower participant burden.

Reliability can be improved by modeling stable variability

Translational neuroscience efforts are often focused on measuring stable biomarkers of disease
risk, status, and prognosis [1]. However, many of the most widely used fMRI modeling approaches
mix stable and transient variability by reducing a large number of fMRI measures to a single average
estimate for each individual. Namely, fMRI studies often reduce regional brain function to a single
estimate of activation or functional connectivity. In task fMRI, for example, this is frequently done
by fitting a single regressor or contrast of interest that represents the alternating structure of a
task between control and experimental conditions (e.g., a boxcar model). Similarly, functional con-
nectivity estimates are typically generated by correlating activity across the entire fMRI scan. These
modeling approaches were originally designed for experimental cognitive neuroscience, where the
between-subjects variance is a source of error to be minimized to maximize the statistical power
1o estimate within-subject experimental effects and group averages. However, with only a single
estimate per individual (i.e., task contrast beta or edge functional connectivity), stable, individual-
specific variance cannot be separated from transient sources of within-subject variance
(e.g., fluctuations in thoughts, emotional states, or attention) and noise [59,60].

Recent research suggests that the reliability of task-activation and functional connectivity measures
can be substantially improved by explicitly isolating stable variance with tools designed for repeated
measures (e.g., latent variable and hierarchical Bayesian modeling) [21,38,61-64]. Critically,
these modeling approaches can be applied both when multiple scans are available from each in-
dividual and when only a single scan is available. This is because fMRI scans intrinsically comprise
many estimates of brain activity or connectivity. For example, multiple activation estimates can be
generated by fitting regressors to the first and second halves of an fMRI scan separately (i.e., split-
half analysis) or, at a finer-grained level, by fitting separate regressors to each trial within a scan
[21,45,61]. Similarly, multiple functional connectivity estimates can be generated by splitting a
single scan in half thereby generating two functional connectivity estimates or, in the extreme, by
generating covariance estimates for every fMRI volume or data point [38,65]. Once multiple esti-
mates are generated for each individual, tools from repeated-measures modeling can be used to
separate ‘stable components’ of fMRI variance from transient variance and noise [64]. Collectively,
such modeling has been found to boost the reliability of activation and functional connectivity mea-
sures, especially from short fMRI scans, by as much as 60% [38,61]. Moreover, these stable com-
ponents exhibit higher heritability and larger behavioral associations, further boosting translational
value [38,61,62,66-68].
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These methods illustrate a measurement principle that may appear counterintuitive: splitting
fMRI data into multiple noisier estimates can generate more reliable measures, at the latent
variable level, than can be achieved through simple aggregation across the constituent parts.
Furthermore, this insight is consistent with recent structural MRI findings that multiple, rapid,
lower-resolution scans can generate more precise estimates of brain structure (e.g., cortical
thickness) than a single, longer, higher-resolution scan [69]. However, it is important to note
that such reliability modeling is not a panacea and cannot replace careful measurement. In
its simplest form, such modeling will, by design, absorb all forms of stable variance including
stable artifacts like head motion, respiration, and vascular dynamics [29,70,71]. Therefore, to
the extent to which these physiological artifacts are imperfectly removed during modeling,
they will also be absorbed by the stable component and continue to corrupt the validity of
brain—behavior associations.

Reliability can be improved by removing physiological artifacts

Non-BOLD sources of variability, like head motion, are often stable features of individuals
[24,70-73]. Therefore, such sources will not necessarily be removed through aggregation
or latent variable modeling, because their variance is nonrandom and insidiously mimics
individual differences of interest. Furthermore, mainstream data-processing techniques
often fail to fully remove these physiological artifacts [24,74-76]. ME-fMRI represents an
emerging, biophysically principled approach to isolate and remove noise and non-BOLD
sources of variance from fMRI data [52]. To do so, ME-fMRI collects multiple whole-brain
images during each excitation pulse (i.e., multiple echoes) instead of the single image that
is typically collected (i.e., single echo). This allows the removal of many physiological artifacts
because the BOLD signal decays across echoes while non-BOLD artifacts and noise do
not [52,77].

As would be expected, improved isolation of the BOLD signal with ME-fMRI generates more pre-
cise measurements of task activation and functional connectivity and improves the statistical power
[62,78,79]. Furthermore, ME-fMRI substantively reduces signal dropout in regions of particular in-
terest for translational neuroscience (e.g., amygdala, accumbens, orbitofrontal cortex) because the
echoes can be optimally weighted based on regionally specific rates of fMRI signal decay [51,52].
Of particular importance, early findings suggest that ME-fMRI allows reliable, precise mapping of
individual differences in brain function with much shorter scans. For example, 10 min of ME-IMRI
data have been found to generate more stable estimates of functional connectivity than 30 min
of single-echo data [51].

While ME-fMRI’s widespread adoption been slowed by technological limitations, recent devel-
opments in scanner hardware and software (e.g., parallel and multiband imaging) now allow
ME-fMRI to be acquired on most scanners with minimal loss of the spatial or temporal resolu-
tion typical of single-echo data [51,80]. Given the improved measurement precision already
offered, as well as its likely continued development, ME-fMRI represents another promising
strategy for translational neuroscientists to prioritize the reliable measurement of individual dif-
ferences by isolating true sources of individual differences in the BOLD signal from non-BOLD
but stable physiological artifacts and noise. ME-fMRI additionally allows innovative study de-
signs that are of interest for translational neuroscience but methodologically challenging for
single-echo fMRI. These include measurement of brain function during slow-onset drug-
administration paradigms as well as the mapping of rapid, stimulus-driven effects in naturalistic
paradigms [81-83]. However, careful data-cleaning practices are still required with ME-fMRI,
because stable individual differences in non-neural BOLD effects (e.g., breathing patterns
throughout a scan) can still confound individual-differences research [75].
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Reliability can be improved by designing stimuli to evoke individual differences

As already noted, the vast majority of IMRI tasks were designed to experimentally manipulate within-
subject, group-averaged effects, not to optimally evoke between-subjects individual differences in
brain function [2,59,84]. Thus, another strategy to improve fMRI measurement of individual differ-
ences is to design new tasks from the ground up with the explicit goal of optimizing reliability and
precision. In particular, there is a largely untapped opportunity to adopt psychometric tools from
item-response theory and generalizability theory to select stimuli based on their ability to
evoke reliable individual differences (see [85-87] for early steps in this direction). Constructing new
tasks and stimuli from the ground up will, admittedly, require time-consuming and expensive MR
pilot studies to assess large batches of stimuli and task items, test their psychometric features,
and iteratively select stimuli that efficiently generate the most precise, reliable measures. However,
related efforts suggest that validated fMRI stimuli with known measurement properties can yield
large benefits including the ability to create more complete models of how individual brains process
sensory, memory, and linguistic information [88-90]. Furthermore, initial evidence suggests that a
small subset of fIMRI timepoints disproportionately drives reliable individual differences in functional
connectivity [91]. As these high-reliability timepoints tend to be elicited by the same movie segments
across individuals [91], large efficiency gains may be possible by selecting stimuli that most efficiently
evoke individual differences in brain function.

Naturalistic stimuli, such as movies, speeches, and complex social scenarios, may have par-
ticular benefits in this regard because they keep participants engaged, awake, and relatively
still, thereby minimizing artifacts due to head motion, attention, and wakefulness [92-94]. Natu-
ralistic stimuli also tend to have higher ecological validity than traditional tasks and can be easily
tailored to a wide variety of content including visual, emotional, and social features that target
psychological constructs of interest [88,95,96]. Relatedly, measures generated from movie
watching, as well as the combination of multiple tasks with resting-state data, can yield more re-
liable estimates of brain function with better predictive utility than single tasks or resting-state data
alone, further suggesting that reliable individual differences may be best elicited from complex,
varied stimuli [5,97,98]. However, these benefits also come with tradeoffs. For example, the com-
plexity of naturalistic stimuli typically cannot be easily controlled (e.g., color composition, spatial
frequency) to levels typical of traditional cognitive neuroscience stimuli (but see [99]).

Concluding remarks

In this review, we have described the origins, challenges, and frontiers of current efforts to gener-
ate reliable fMRI measures for translational neuroscience. Many of the most commonly used fMRI
measures are not yet sufficiently reliable for use as clinical biomarkers. In retrospect, this may not
be altogether surprising; the majority of the fMRI measures used today were not designed to iden-
tify precise between-subjects variance but rather to reveal within-subject cognitive neuroscience
effects through experimental control and group averaging. By considering these legacy con-
straints, fMRI researchers are now challenged to create new paradigms for the reliable measure-
ment of individual differences in brain function. pfMRI has revealed that deep individuality in the
functional organization of the brain is measurable if stable variance is systematically isolated by
the collection of large amounts of data in each individual. Furthermore, emerging methods in re-
liability modeling, ME-fMRI, and study design suggest that reliable individual-specific fMRI mea-
sures can be more efficiently generated if protocols are optimized to isolate stable sources of
between-subjects variability. Importantly, these methods could be implemented simultaneously
and thus may yield complementary returns for precision and reliability. Preliminary efforts that
have integrated ME-fMRI with naturalistic stimuli and item-level modeling with data aggregation
suggest that the synthesis of these methods may offer the most powerful avenue to identify
reliable measures of individual differences in brain function with high translational value and
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Outstanding questions

How much data are needed to generate
reliable individual-specific estimates of
brain function when aggregation,
reliability modeling, ME-fMRI, and
stimulus design are combined? In other
words, are these strategies complemen-
tary or substitutes for one another?

What are the ‘fundamental units’ of
individual differences in brain function
that can be measured with fMRI?
What combination of task activation,
functional connectivity during rest and
tasks, and/or the way that functional
connectivity changes during tasks to
shape task activation can best explain
individuality in human brain function?

What are the underlying mechanisms
that drive reliable individual differences in
brain function measurable with fMRI?
While we have emerging evidence
that such differences reflect local
patterns of anatomy, myelination, and
structural connectivity, deepening our
understanding of these mechanisms
can not only further advance fMRI
strategies for reliable measurement but
also inform translation of findings to
clinical applications.

How can we most effectively scale-up
reliable fMRI measurement for popula-
tion neuroscience? To date, pfMRI
measures have been limited to highly
select, niche datasets. To understand
human variation in brain function, es-
pecially of clinical value, we will need in-
novative fMRI protocols that can be
readily implemented in large-scale,
population-representative samples.
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potential for clinical applications [45,32]. Of course, fMRI is still a nascent tool, and many oppor-
tunities exist for continued technological innovation and development (see Outstanding
questions). The strategies we highlight here are not intended to be exhaustive or prescriptive.
Instead, by highlighting these strategies alongside their grounding in psychometric principles,
we hope to promote the design of fMRI studies that are better positioned to generate reliable
measures of individual differences in brain function. Translational neuroscience with fMRI cannot
be a secondary goal of experimental cognitive neuroscience and instead demands iterative, explicit
development to optimize the measurement of reliable individual-specific variability. Despite recent
setbacks, we see a bright future for a cumulative translational neuroscience of individual differences
given that now, more than ever, we understand the limitations of our current fMRI measures and
have emerging strategies to build more precise, reliable measures.
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