Association between relative age at school and persistence of ADHD in prospective studies: an individual participant data meta-analysis

Synergy for the Influence of the Month of Birth in ADHD (SIMBA) study group*

Summary

Background The youngest children in a school class are more likely than the oldest to be diagnosed with ADHD, but this relative age effect is less frequent in older than in younger school-grade children. However, no study has explored the association between relative age and the persistence of ADHD diagnosis at older ages. We aimed to quantify the association between relative age and persistence of ADHD at older ages.

Methods For this meta-analysis, we searched MEDLINE, Embase, CINAHL, PsycINFO, and PubPsych up to April 1, 2022, with terms related to “cohort” and “ADHD” with no date, publication type, or language restrictions. We gathered individual participant data from prospective cohorts that included at least ten children identified with ADHD before age 10 years. ADHD was defined by either a clinical diagnosis or symptoms exceeding clinical cutoffs. Relative age was recorded as the month of birth in relation to the school-entry cutoff date. Study authors were invited to share raw data or to apply a script to analyse data locally and generate anonymised results. Our outcome was ADHD status at a diagnostic reassessment, conducted at least 4 years after the initial assessment and after age 10 years. No information on sex, gender, or ethnicity was collected. We did a two-stage random-effects individual participant data meta-analysis to assess the association of relative age with persistence of ADHD at follow-up. This study was registered with PROSPERO, CRD42020212650.

Findings Of 33 119 studies generated by our search, we identified 130 eligible unique studies and were able to gather individual participant data from 57 prospective studies following up 6504 children with ADHD. After exclusion of 16 studies in regions with a flexible school entry system that did not allow confident linkage of birthdate to relative age, the primary analysis included 41 studies in 15 countries following up 4708 children for a period of 4 to 33 years. We found that younger relative age was not statistically significantly associated with ADHD persistence at follow-up (odds ratio 1·02, 95% CI 0·99–1·06; p=0·19). We observed statistically significant heterogeneity in our model (Q=75·82, p=0·0011, I²=45%). Participant-level sensitivity analyses showed similar results in cohorts with a robust relative age effect at baseline and when restricting to cohorts involving children with a clinical diagnosis of ADHD or with a follow-up duration of more than 10 years.

Interpretation The diagnosis of ADHD in younger children in a class is no more likely to be disconfirmed over time than that of older children in the class. One interpretation is that the relative age effect decreases the likelihood of children of older relative age receiving a diagnosis of ADHD, and another is that assigning a diagnostic label of ADHD leads to unexplored carryover effects of the initial diagnosis that persist over time. Future studies should be conducted to explore these interpretations further.

Funding None.

Copyright © 2023 The Authors. Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction

ADHD is characterised by impairing and pervasive inattention, and hyperactivity and impulsivity that are inconsistent with developmental levels. With an estimated prevalence of 5–7% in school-age children internationally, ADHD is the most common neurodevelopmental condition in childhood. Prevalence of ADHD tends to decrease in adulthood, when it is estimated to be 2–5%. Management of individuals with ADHD includes pharmacological (stimulant and non-stimulant medications) and non-pharmacological options.
Some studies have shown an effect of relative age on the diagnosis of ADHD—ie, that the youngest children in a school class are more likely to receive a diagnosis of ADHD than the oldest. We did a PubMed/MEDLINE search, with no language restrictions, from database inception until Feb 1, 2020 (while planning the current study), and updated on April 1, 2022, to identify systematic reviews with and without meta-analysis on the relative age effect in ADHD. We used the following search terms and syntax: ("ADHD" OR "attention-deficit/ hyperactivity disorder" OR "attention deficit" OR "hyperkinetic syndrome" OR "hyperkinetic disorder") AND ("relative age" OR "relative immaturity" OR "birth" OR young"). We found two systematic reviews without and one with meta-analysis, which confirmed that children and adolescents who are younger than their classmates have a higher likelihood of being diagnosed with ADHD. Additionally, these reviews showed that the relative age effect is less frequent in older school-grade children than in younger ones. The relative age effect could raise doubts about the validity of the diagnosis of ADHD in children of young relative age, who could be labelled with ADHD and unnecessarily exposed to possible side-effects of medications for ADHD solely because of their temporary immaturity. However, it is unknown to what extent ADHD diagnosed in children with a young relative age persists later on.

A key moderator of this relative age effect on ADHD diagnosis is the absolute age of children. In classes of older children, the relative age effect on ADHD diagnosis is less evident. A common explanation for this relative age effect is that developmental immaturity is associated with higher levels of inattention, hyperactivity, and impulsivity that can be judged as age-inappropriate when compared to the class norm, rather than being considered in relation to the chronological age of each child. The relative age effect is moderated by absolute age because the developmental difference caused by an age gap of up to 12 months attenuates with increasing age.

Overall, the relative age effect could raise concerns about misdiagnosing children with ADHD because of their temporary immaturity, and thus possibly exposing them to unnecessary labelling and medications. However, to our knowledge, no study has yet explored the persistence over time of ADHD diagnosis in children of young relative age. Our hypothesis was that younger relative age would be associated with a lower likelihood of ADHD persistence over time. If some children are identified with ADHD among those with an older relative age, rather, it might decrease the number of children identified with ADHD among those with an older relative age. Second, potential carryover effects, such as teachers, parents, or other informants maintaining an endorsement of impairing ADHD symptoms once a diagnosis of ADHD is assigned, could lead to persistence of an inappropriate diagnostic label. Given the implications on the diagnostic process for ADHD, it is important for future studies to disentangle these two interpretations.

We gathered individual participant data from 57 prospective cohorts that followed up 6504 children with ADHD for a period ranging from 4 to 33 years, resulting in the largest available dataset to assess the association between relative age and the persistence of ADHD at older ages. We found that a younger relative age of children diagnosed with ADHD did not decrease the persistence of ADHD in later years.

Methods

Search strategy and selection criteria

This individual participant data meta-analysis, based on a prepublished protocol (PROSPERO CRD42020212650), was conducted and reported according to relevant guidelines. The PRISMA checklist is reported in the appendix (p I).

We searched MEDLINE, Embase, CINAHL, PsycINFO, and PubPsych with terms related to two constructs—"cohort" and "ADHD"—up to April 1, 2022. A full list of search terms is in the appendix (p 6). No date, publication
type, or language restrictions were applied. Screening of the titles and abstracts was performed independently by CJG, SCa, and CP. Study selection was performed by CJG and SCa, and disagreements were resolved by SCor. References of included studies and Google Scholar were searched to identify additional references.

We included prospective studies in which at least ten children who were categorised as having ADHD were reassessed for ADHD at least 4 years after the initial assessment. Studies were eligible if they included children with a diagnosis of ADHD according to DSM versions III to 5, a diagnosis of hyperkinetic syndrome according to ICD versions 9 or 10, or ADHD symptoms exceeding clinical cutoffs established using either a clinical interview or a questionnaire with adequate psychometric properties (a list of included tools is in the appendix p 7). We required the initial diagnosis to have occurred before children were age 10 years, and that children were at least of age to start preschool. When multiple informants provided a measure of ADHD symptoms, we used the recommended averaging approach to categorise ADHD. When multiple assessments of ADHD had been performed at baseline, we used multiple independent samples for the same cohort when building the meta-analytic model.

Data analysis
Anticipating that a significant proportion of primary study authors would not be able to share their sensitive data, we developed a script in R to analyse the data automatically and generate anonymised outputs for our meta-analysis. Primary study authors were invited either to share the raw data through secure data transfer or to apply the R script locally and then share the anonymised results. Authors were provided with extensive guidance on the script during videoconference meetings. Several study-level variables were also independently extracted by two authors (CJG and SCa). Importantly, the relative age variable was obtained by recoding the month of birth in relation to the school-entry cutoff date. Children whose birth month was in the first month after the school-entry cutoff date were coded 1, those whose birth month was in the second month after the school-entry cutoff date were coded 2, and so on for each subsequent month. This coding was applied for all cohorts regardless of their school-entry cutoff dates, ensuring that the oldest children in the class were assigned a relative age of 1 and the youngest children in the class were assigned a relative age of 12. For each cohort, the school-entry cutoff date was first obtained from administrative or scientific sources and then confirmed by the authors of the primary studies. Crucially, in some geographical areas, there was some flexibility in the application of the school-entry cutoff date, such as when school entry depended on the results of some developmental tests. In these situations, because the month of birth was no longer necessarily related to relative age, we excluded the data of the cohorts from the main analyses but retained them in a secondary analysis. Details on the data extraction are in the appendix (p 8).

The risk of bias of the included studies was assessed independently by two authors (CJG and SCa) using an adapted version of the Newcastle Ottawa Scale for cohort studies. The primary and only outcome was the persistence of ADHD diagnosis at follow-up, which was defined by the initial diagnosis before age 10 years being confirmed at a later follow-up diagnostic assessment. The follow-up diagnostic reassessment needed to have occurred after age 10 years (based on evidence that the relative age effect tends to decline after this age) and at least 4 years after the initial diagnostic assessment. We did all statistical analyses in the R environment (version 4.1.1). To analyse the data of primary studies, we fitted, for each study, a logistic regression model assessing the association of relative age with persistence of ADHD at follow-up. When cohorts used a complex survey design, we conducted survey-weighted logistic regression using the R survey package. In all our analyses, an odds ratio (OR) greater than 1 indicates that younger relative age is associated with an increased likelihood of having a persistent diagnosis of ADHD at follow-up. All meta-analytic pooled estimates were obtained using a random-effects meta-analysis with a restricted maximum likelihood estimator, using the meta package. When necessary, we added a random effect at the sample level to account for the dependency between effect sizes derived from cohorts with several independent subsamples. Heterogeneity was estimated using the Q and I² statistics.

We then did a post-hoc data quality check. As most of our studies were composed of samples of participants with ADHD, we were unable to ascertain systematically whether the participants displayed a relative age effect at baseline. Therefore, we explored whether we could detect the relative age effect on ADHD diagnosis at baseline in a subsample of nine large community cohort studies that allowed us to test this hypothesis.

As a post-hoc sensitivity analysis to test whether the absence of relative age effect on ADHD persistence was not related to the potential inclusion of participants who were not in their age-appropriate school grade, we excluded participants who were born within 2 months before or after the school-entry cutoff date (because children born close to the school-entry cutoff date are particularly likely to have been enrolled to school 1 year earlier or later) and repeated the primary analysis. In planned sensitivity analyses, we limited our analyses to participants: (1) with a follow-up longer than 10 years; (2) with a baseline diagnosis made before age 8 years and re-assessed at follow-up after age 16 years; and (3) assessed with the same measure at baseline and follow-up.

As further robustness checks, we replicated our analyses by categorising the month of birth and retaining
in the analysis only participants with the youngest and oldest relative age. For this post-hoc analysis, we selected children born in the 4 months that preceded or followed the school-entry cutoff date. We also conducted a post-hoc Jackknife leave-one-out meta-analysis, we excluded samples with a large Cook’s distance (planned), and we replicated our analyses with a planned robust regression model, aiming to limit the effect of violation of assumptions of the generalised linear model.

In the cohort studies that allowed us to explore the relative age effect on ADHD diagnosis at baseline, we conducted a meta-regression exploring whether the relative age effect on ADHD persistence varied depending on the statistical significance (p value above or below 0.05) and the strength of the relative age effect at baseline (OR value above or below 1.05). We also conducted meta-regressions exploring whether effect sizes varied depending on: (1) the tools used to assess ADHD (research interviews, symptom count, or broad-based scales); (2) the sampling type; (3) participants’ ADHD presentation at baseline (combined, predominantly inattentive, or predominantly hyperactive or impulsive); (4) participant IQ (below vs above the median value of 100); and (5) school entry system (flexible vs non-flexible).

Deviations from the protocol (all minor) are listed in the appendix (p 8).

Role of the funding source
There was no funding source for this study.

Results
From an initial pool of 33119 potentially relevant studies, we identified 130 unique eligible studies (figure 1), of which we were able to obtain data from 57 studies (44%), including 56 published studies21–77 and one personal communication (Abd Elkmasoud, Department of Paediatrics, Alexandria University, Egypt, 2022) and encompassing 6504 participants categorised as having ADHD (appendix p 9). The appendix lists the eligible (p 9) and excluded studies after full-text reading (p 20).

25 (44%) of the 57 studies were conducted in North or South America (22 [39%] in the USA), 22 (39%) in Europe, five (9%) in Africa, three (5%) in Asia, and two (4%) in Oceania (appendix p 35). The number of participants per study ranged from ten to 813, and the mean length of follow-up ranged from 4 to 33 years (median 7, IQR 6–9). The persistence of ADHD at follow-up ranged from 0% to 100% (44%, 25%–65%).

16 studies were excluded from the primary analysis because they were conducted in regions or countries with a flexible school entry system that did not allow us to confidently link the birthdate to the relative age. The primary analysis was therefore done in 41 studies in 15 countries following up 4708 children for a period of 4 to 33 years. Among the 41 studies, 20 categorised ADHD using a formal diagnostic procedure, 13 based on symptom count using interviews or questionnaires, and eight based on scores above the threshold of broad-based scales assessing ADHD symptoms. No participant-level information on sex, gender, or ethnicity was collected.

We pooled the results of nine community cohort studies that each included more than 1000 participants (with and without ADHD) at baseline (N=88753). As expected, younger relative age was statistically significantly associated with increased odds of being diagnosed with ADHD at baseline (OR 1.04, 95% CI 1.02–1.06; p<0.0001; appendix p36). All nine community cohorts generated a positive effect size (OR>1); three generated a relative age effect larger than OR=1.05 and six led to a statistically significant effect.

![Figure 1: Study selection](https://example.com/image.png)
In the primary analysis, there was no substantial association between relative age and persistence of ADHD. We found no association between younger relative age and persistence of ADHD (OR 1.02, 95% CI 0.99–1.06; p=0.19; figure 2; appendix p 37). We observed statistically significant heterogeneity in our model (Q=77.82, I²=45%).

In the sensitivity analysis that excluded participants born in the 2 months before or after the school-entry cutoff date, only 21 of the 41 studies from our main analysis were feasible for inclusion. This subsample showed a pooled effect size similar to that of our main analyses and we still found no statistically significant association of relative age with ADHD persistence (figure 3; appendix p 38). When we restricted our analyses to participants with a follow-up of more than 10 years, a baseline diagnosis before age 8 years and follow-up diagnosis after age 16 years, or with the same ADHD measure at baseline and follow-up, this did not materially change the results.

In robustness checks, we found that using robust regression or excluding samples with a large Cook’s distance (n=2) did not materially change the results (figure 3, appendix p 41). The largest and smallest pooled effect sizes obtained in a Jackknife analysis were also very close to those obtained in our primary model. Lastly, dichotomising relative age by restricting to participants with the youngest versus oldest relative age also led to similar results (OR 1.33, 95% CI 1.00–1.76; p=0.049), although we were able to include only 24 of the 41 studies in this analysis.

Meta-regressions were done in the nine population-based cohorts that allowed us to explore the relative age effect on ADHD diagnosis at baseline, and they showed that the association between relative age and ADHD persistence was not moderated by the statistical significance of the relative age effect at baseline (ie, p<0.05 vs p≥0.05; QM 1.81, p=0.18) or the strength of the relative age effect at baseline (OR 1.05 vs OR 1.01; QM 0.99, p=0.32; appendix p 44). Additionally, we found no statistically significant moderating effect of the tool used for the diagnosis of ADHD when focusing the analyses on studies using diagnostic interviews, symptom count, or broad-based scales (QM 2.85, p=0.42). Results of other meta-regression analyses did not reveal any important moderator.

Figure 2: Forest plot of the association between younger relative age and persistence of ADHD

<table>
<thead>
<tr>
<th>Children</th>
<th>OR (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALSPAC²¹</td>
<td>0.97 (0.93–1.00)</td>
<td>0.08</td>
</tr>
<tr>
<td>CLASS³¹</td>
<td>0.98 (0.95–1.01)</td>
<td>3.3</td>
</tr>
<tr>
<td>LGH-bay⁴¹</td>
<td>1.13 (1.04–1.21)</td>
<td>2.4</td>
</tr>
<tr>
<td>MGH-girls⁴¹</td>
<td>1.18 (1.00–1.40)</td>
<td>2.7</td>
</tr>
<tr>
<td>Li⁴¹</td>
<td>0.98 (0.93–1.03)</td>
<td>2.6</td>
</tr>
<tr>
<td>MCG-Sydney⁵⁰</td>
<td>1.01 (0.99–1.03)</td>
<td>3.3</td>
</tr>
<tr>
<td>MCG-Sydney²⁵</td>
<td>1.02 (0.99–1.05)</td>
<td>3.0</td>
</tr>
<tr>
<td>LSAC-Gyro²⁷</td>
<td>0.95 (0.88–1.03)</td>
<td>4.0</td>
</tr>
<tr>
<td>LSAC-byro²⁷</td>
<td>0.95 (0.84–1.08)</td>
<td>1.7</td>
</tr>
<tr>
<td>IMAGE-UK/SEFOS⁹⁰</td>
<td>1.01 (0.97–1.06)</td>
<td>1.1</td>
</tr>
<tr>
<td>E-risk²⁵</td>
<td>1.23 (1.15–1.31)</td>
<td>2.0</td>
</tr>
<tr>
<td>BCS⁴⁰</td>
<td>0.97 (0.92–1.03)</td>
<td>3.9</td>
</tr>
<tr>
<td>NYS³°⁵</td>
<td>0.85 (0.79–0.92)</td>
<td>3.4</td>
</tr>
<tr>
<td>Rosenbaum²⁷</td>
<td>0.88 (0.81–0.96)</td>
<td>2.0</td>
</tr>
<tr>
<td>SAGE³ⁱ</td>
<td>0.89 (0.73–1.07)</td>
<td>2.3</td>
</tr>
<tr>
<td>Geller²⁷</td>
<td>0.97 (0.81–1.16)</td>
<td>2.5</td>
</tr>
<tr>
<td>JCSS³⁰</td>
<td>1.00 (0.99–1.00)</td>
<td>0.0</td>
</tr>
<tr>
<td>LSUY⁶⁸</td>
<td>1.09 (0.96–1.23)</td>
<td>3.7</td>
</tr>
<tr>
<td>ADSU³⁷</td>
<td>1.17 (0.94–1.46)</td>
<td>1.9</td>
</tr>
<tr>
<td>BGALS³⁸</td>
<td>1.05 (0.92–1.20)</td>
<td>3.4</td>
</tr>
<tr>
<td>MLSRA³⁰</td>
<td>1.00 (0.98–1.02)</td>
<td>0.0</td>
</tr>
<tr>
<td>Milwaukee¹⁰¹</td>
<td>1.10 (0.97–1.26)</td>
<td>3.6</td>
</tr>
<tr>
<td>Pelotas²⁷</td>
<td>1.00 (0.87–1.14)</td>
<td>3.5</td>
</tr>
<tr>
<td>Fenesy²⁷</td>
<td>1.03 (0.94–1.14)</td>
<td>4.6</td>
</tr>
<tr>
<td>PLASTICITY²⁴</td>
<td>0.83 (0.76–0.90)</td>
<td>1.9</td>
</tr>
<tr>
<td>TEMPO³⁵</td>
<td>0.89 (0.76–1.00)</td>
<td>1.2</td>
</tr>
<tr>
<td>Erkan²⁵</td>
<td>1.04 (0.90–1.20)</td>
<td>3.3</td>
</tr>
<tr>
<td>INMA³⁵</td>
<td>1.08 (0.78–1.48)</td>
<td>1.0</td>
</tr>
<tr>
<td>Max²⁵</td>
<td>1.48 (0.93–2.34)</td>
<td>0.8</td>
</tr>
<tr>
<td>CAP³⁰</td>
<td>1.18 (1.00–1.39)</td>
<td>2.8</td>
</tr>
<tr>
<td>ERICA²⁵</td>
<td>1.14 (0.89–1.46)</td>
<td>0.6</td>
</tr>
<tr>
<td>DMTI²⁵</td>
<td>0.90 (0.68–1.21)</td>
<td>1.3</td>
</tr>
<tr>
<td>GSMS²⁵</td>
<td>1.17 (0.85–1.61)</td>
<td>1.0</td>
</tr>
<tr>
<td>DNBC²⁵</td>
<td>1.07 (0.71–1.64)</td>
<td>6.4</td>
</tr>
<tr>
<td>Uppals⁷</td>
<td>1.41 (0.88–2.35)</td>
<td>0.5</td>
</tr>
<tr>
<td>IMAGE-SPAIN³⁰</td>
<td>0.87 (0.70–1.08)</td>
<td>2.0</td>
</tr>
<tr>
<td>VIBES²⁵</td>
<td>0.61 (0.38–0.99)</td>
<td>0.5</td>
</tr>
<tr>
<td>MARS²⁵</td>
<td>0.91 (0.70–1.17)</td>
<td>1.5</td>
</tr>
<tr>
<td>LINEPU²⁵</td>
<td>0.87 (0.61–1.24)</td>
<td>0.9</td>
</tr>
<tr>
<td>BHC²⁵</td>
<td>1.20 (0.83–1.73)</td>
<td>0.8</td>
</tr>
<tr>
<td>CATSS²⁵</td>
<td>1.01 (0.96–1.06)</td>
<td>6.3</td>
</tr>
<tr>
<td>ADSAT²⁵</td>
<td>1.21 (1.13–1.30)</td>
<td>5.6</td>
</tr>
<tr>
<td>QNTS²⁵</td>
<td>1.16 (0.73–1.87)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Pooled effect size 4.208

Heterogeneity: I²=45%, τ²=0.0045, p=0.01
In the sensitivity analysis excluding by month of birth, we excluded participants who were born within 2 months before or after the school-entry cutoff date. However, one of our additional analyses addressed this, we did meta-regressions in large community cohort studies with a statistically significant relative age effect at baseline, or with a moderate to large relative age effect at baseline. Third, despite our efforts, we were able to gather individual participant data from only about 40% of the identified studies. Although this proportion is not uncommon in individual participant data meta-analyses, this could affect the generalisation of our findings.

However, rather than aiming to obtain data from each included study, individual participant data meta-analyses should systematically test whether a relative age effect was present at baseline across all included studies. To address this, we did meta-regressions exploring the moderating effect of the identification of ADHD in children of younger relative age because they are influenced by the initial diagnosis. Indeed, it has been shown that labelling young children with ADHD can increase the odds of persistent ADHD symptoms, classroom learning problems, and specialised service use. An alternative interpretation of our main finding is that assigning a diagnostic label of ADHD leads to unexplored carryover effects of the initial diagnosis, which outweigh the influence of relative age. It is possible that, once a diagnostic label of ADHD is assigned, parents, teachers, and others act differently with the child or modify their expectations because they are influenced by the initial diagnosis. What is the duration of this effect? This interpretation reinforces the concern about the influence of relative age on ADHD, as it suggests that this effect might have a long-term impact. The present findings cannot disentangle these two interpretations but highlight the importance of assessing the exact mechanisms underlying the effect of relative age on ADHD, in order to improve the diagnostic process for ADHD.

Our study results should be considered in light of some limitations. First, we were unable to access the exact date when each child in our sample started school or whether they had any school repetition during their education, which would be necessary to determine more accurately whether month of birth was associated with relative age. However, one of our additional analyses addressed this by removing participants born close to the school-entry cutoff date, who are at higher risk of either entering school in advance or being held back. Second, because of the design of most of the included studies (ie, cohorts of children diagnosed with ADHD), we could not systematically test whether a relative age effect was present at baseline across all included studies. To address this, we did meta-regressions in large community cohort studies with a statistically significant relative age effect at baseline, or with a moderate to large relative age effect at baseline. Third, despite our efforts, we were able to gather individual participant data from only about 40% of the identified studies. Although this proportion is not uncommon in individual participant data meta-analyses, this could affect the generalisation of our findings.

However, rather than aiming to obtain data from each study, individual participant data meta-analyses should gather a representative sample to test the main effects and the role of possible moderators, which we were able to do. Fourth, we did not have sufficient data to conduct meta-regressions exploring the moderating effect of pharmacological treatments for ADHD on our

Discussion

Contrary to our hypothesis, we found that younger relative age was not associated with a statistically significant decrease in persistence of ADHD diagnosis over time. All our additional analyses confirmed the robustness of this finding from our primary analysis. Importantly, all participants in the included studies underwent a similar diagnostic process (a baseline and a follow-up assessment for ADHD using validated measures), and a large variability in the persistence of ADHD was observed. Therefore, the absence of association between relative age and persistence of ADHD cannot be attributed to low variability in our outcome variable caused, for example, by the use of inappropriate measures.

Two possible interpretations could explain our main finding. First, contrary to what is commonly assumed, younger relative age might not increase the likelihood of receiving a diagnosis of ADHD. Instead, it is possible that the relative age effect decreases the likelihood of receiving any school-school entry cutoff date.

In summary, although this interpretation supports the validity of ADHD diagnoses in children of younger relative age, it warns of a possible underdiagnosis of ADHD in children of older relative age. An alternative interpretation of our main finding is that assigning a diagnostic label of ADHD leads to unexplored carryover effects of the initial diagnosis, which outweigh the influence of relative age. It is possible that, once a diagnostic label of ADHD is assigned, parents, teachers, and others act differently with the child or modify their expectations because they are influenced by the initial diagnosis. Indeed, it has been shown that labelling young children with ADHD can increase the odds of persistent ADHD symptoms, classroom learning problems, and specialist service use. An alternative interpretation of our main finding is that assigning a diagnostic label of ADHD leads to unexplored carryover effects of the initial diagnosis, which outweigh the influence of relative age. It is possible that, once a diagnostic label of ADHD is assigned, parents, teachers, and others act differently with the child or modify their expectations because they are influenced by the initial diagnosis. Indeed, it has been shown that labelling young children with ADHD can increase the odds of persistent ADHD symptoms, classroom learning problems, and specialist service use.
association of interest. Future analyses of individual studies including accurate measurements of the frequency and duration of pharmacological treatments are required. Fifth, we did not collect any information on sex, gender, or ethnicity. This decision was made because we anticipated that these variables would be considered sensitive information, because they can constitute identifying variables in small samples and would thus prevent some cohorts from participating.

Overall, after gathering individual participant data from 57 prospective cohorts, the present findings suggest that the diagnosis of ADHD in the younger children in a class is no more likely to be disconfirmed over time than diagnoses of older children in the class. Because the mechanisms underlying the relative age effect on childhood ADHD are unknown, it is important that future studies explore whether this reflects the persistence of an appropriate or an inappropriate diagnostic label.

SIMBA study group
Corentin J Gosling (Paris, France), Serge Caparos (Paris, France), Charlotte Pininakis (Paris, France), Guido Schwarzer (Freiburg, Germany), Gerta Rücker (Freiburg, Germany), Sharraif S Agha (Cardiff, UK), Hekmat Alrouh (Amsterdam, Netherlands), Antony Amliber (London, UK), Peter Anderson (Melbourne, VIC, Australia), Ainara Andriarena (San Sebastian, Spain), L Eugene Arnold (Columbus, OH, USA), Louise Arsenault (London, UK), Philip Asherson (London, UK), Leslie Babinski (Durham, NC, USA), Vittoria Barbanti (San Raffiele, Italy), Russell Barkley (Richmond, VA, USA), Aluisio J D Barros (Pelotas, Brazil), Fernando Barros (Pelotas, Brazil), John E Bates (Bloomington, IN, USA), Laura J Bell (Berkeley, CA, USA), Carmen Benenguer (Valencia, Spain), Eleise van Bergen (Amsterdam, Netherlands), Joseph Biederman* (Boston, MA, USA), Boris Birmaher (Pittsburgh, PA, USA), Tormod Bøe (Bergen, Norway), Michel Boivin (Montreal, QC, Canada), Dorret I Boomsma (Amsterdam, Netherlands), Valerie C Brandt (Southampton, UK), Rodrigo A Bressan (Sao Paulo, Brazil), Kariin C Brocki (Uppsala, Sweden), Thomas R Broughton (Cardiff, UK), Sara J Buffert (Louisville, KY, USA), Regina Bussing (Gainesville, FL, USA), Meng Cao (Newark, NJ, USA), Ariane Cartgny (Paris, France), Ana Miranda Casas (Valencia, Spain), Aseshalom Caspi (Durham, NC, USA), F Xavier Castellanos (New York, NY, USA), Arthur Caye (Porto Alegre, Brazil), Lise Cederkvist (Copenhagen, Denmark), Stephen Collishaw (Cardiff, UK), William E Copeland (Burlington, VT, USA), Sylvia M Cote (Montreal, QC, Canada), William L Coventry (Armidale, NSW, Australia), Nanette M M Dol Debes (Herlev, Denmark), Hayley Denyer (London, UK), Kenneth A Dodge (Durham, NC, USA), Hiczan Dogru (New York, NY, USA), Daryl Efron (Melbourne, VIC, Australia), James Egan (Dublin, Ireland), Massimiliano Orr (Montreal, QC, Canada), Pedro M Pan (Sao Paulo, Brazil), Leona Pascoe (Melbourne, VIC, Australia), Gregory S Pettit (Auburn, AL, USA), Jolie Price (Bethesda, MD, USA), Marisa Rebagliato (Castellón, Spain), Isolina Riaño-Galán (Oviedo, Spain), Luis A Roldán (Porto Alegre, Brazil), Glenn J Roisman (Minneapolis, MN, USA), Maria Rosa (Montreal, QC, Canada), Jerrold F Rosenbaum (Boston, MA, USA), Giovanni A Salum (Porto Alegre, Brazil), Sara Samaillahi (Helsinki, Finland), Ina S Santos (Pelotas, Brazil), Nella S Schiavone (Helsinki, Finland), Lorrie Schmid (Durham, NC, USA), Emma Scherbers (Giekegou, Australia), Philip Shaw (Bethesda, MD, USA), Tim J Silk (Melbourne, VIC, Australia), Jeffry A Simpson (Minneapolis, MN, USA), Erik W Skogli (Innlandet, Norway), Stephanie Stepp (Pittsburgh, PA, USA), Katrine Strandberg Larsen (Copenhagen, Denmark), Gustavo Sudre (Bethesda, MD, USA), Jordi Sunyer (Barcelona, Spain), Mini Tandon (St Louis, MO, USA), Anita Thapar (Cardiff, UK), Phoebe Thomson (New York, NY, USA), Lisa B Thorrel (Stockholm, Sweden), Hannah Tintchman (Paris, France), Maites Torrent (Menorca, Spain), Luciana Tovo-Rodrigues (Pelotas, Brazil), Gail Tripp (Okinawa, Japan), Olsouk Ukonnume (Eaeret, UK), Stephanie HVM Van Goozen (Cardiff, UK), Melissa Vos (Groningen, Netherlands), Soline Vallez (Paris, France), Yufeng Wang (Beijing, China), Franz G Westmaer (Wuppertal, Germany), Diana J Whalen (St Louis, MO, USA), Yuliya Yoncheva (New York, NY, USA), Eric A Youngstrom (Chapel Hill, NC, USA), Kapri Sayal (Nottingham, UK), Marco Solzni (Ottawa, ON, Canada), Richard Delorme (Paris, France), Samuele Cortese (Southampton, UK).

Contributors
CJG, SCA, CP, RD, and SCor conceptualised the study. All authors contributed to data collection, data curation, or data analysis of at least one study. CJG, GSc, GR, and SCor performed formal meta-analysis. CJG and SCor drafted the manuscript. For each cohort, CJG and all the cohort team members had access to the raw data. All authors reviewed and edited the manuscript and had final responsibility for the decision to submit for publication.

Declaration of interests
GCs declares payment or honoraria for manuscript writing from Springer and personal fees from Roche as an external statistical consultant. GR declares payment or honoraria for manuscript writing from Springer and for editorial work from Wiley. LEA declares grants or contracts from Supernus Pharmaceuticals, Roche/Genentech, Otsuka Pharmaceutical, Axial, Yamo Pharmaceuticals, and MapLight; consulting fees from Pfister, Yamo Pharmaceuticals, and Children and Adults with Attention-Deficit/Hyperactivity Disorder (CHADD); payment or honoraria for lectures, presentations, speakers’ bureaux, manuscript writing, or educational events from APA Support for attending meetings and travel from CHADD; and participation on a data safety monitoring board or advisory board for Otsuka, Roche/Genentech, the National Institute of Mental Health (NIMH), and the University of California, Los Angeles. PAS declares royalties or licenses from Patos; consulting

www.thelancet.com/psychiatry Published online October 25, 2023 https://doi.org/10.1016/S2215-0366(23)00272-9 7
fees from Janssen; and payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Janssen and Takeda. RA declares royalties or licenses from Guiford Publications, the American Psychological Association, PESI, ContinuingEdCourses.net; and payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from AstraZeneca, Takeda, the Medical College of Wisconsin, and Ochsner Medical Center. JB declares grants or contracts from the American Academy of Child and Adolescent Psychiatry, the Feinstein Institutes for Medical Research, Genentech, Headspace, the National Institute on Drug Abuse, Pfizer, the Roche Translational and Clinical Research Center, Sunovion Pharmaceuticals, Takeda, Tris Pharma, the National Institutes of Health (NIH), and the US Food and Drug Administration; royalties or licenses from Biomarin, Bracket Global, Cogstate, Ingenx, MedAvante-Propahse, Takeda, Sunovion Pharmaceuticals, and TheraVance Biopharma; royalties from a copyrighted rating scale used for ADHD diagnoses paid to the Department of Psychiatry at Massachusetts General Hospital; consulting fees from Cowen Healthcare Investments; payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from the University of California, Davis, Massachusetts Psychiatry Academy, MedLearning, New York University, the American Academy of Child and Adolescent Psychiatry, the American Psychiatric Nurses Association, Cogstate, and the Integrative Sciences; and patents planned, issued or pending: US Patent (#14/027,676) for a non-stimulant treatment for ADHD; US Patent (#10,245,271 B2) for a treatment of impaired cognitive flexibility, and patent pending (#61/233,868) on a method to prevent stimulant abuse. BB declares grants or contracts from NIMH; royalties or licenses from UpToDate. Rab declares consulting fees, payment, or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events and support for attending meetings and travel from Janssen. ACG declares consulting fees from Knight Therapeutics. WLC grants grants from the Australian Research Council (DP190102441 and DP190102445). HDG declares grants or contracts from the Scientific and Technological Research Council of Türkiye. SVF declares income, travel expenses, and continuing education support or research support from Aardvark, Aardwolf, AINM, Tris, Ostuka, Ironshore, Kanjo, Johnson & Johnson/ Janssen, KenPharm/Corium, Akili, Supernus, Atentiv, Noven, Sky Therapeutics, Axsome, and Genomind; holding US patent US20130217707 A1 with his institution for the use of sodium-hydrogen ion exchange inhibitors in the treatment of ADHD; royalties from books published by Guilford Press: Straight talk about your child’s mental health, Oxford University Press: Schizophrenia: the facts, and Elsevier: ADHD: Non-Pharmacologic Interventions; and being Program Director of www.ADHDEvidence.org and www.ADHDDinAdults.com. RF declares grants or contracts from AbbVie, Arbor, Lundbeck, Neurim Pharmaceuticals, NIH, PaxMedica, the Patient-Centered Outcomes Research Institute, Pfizer, Sunovion Pharmaceuticals, Supernus Pharmaceuticals, Takeda, and Viatris; consulting fees from Acadia, Adams Pharmaceuticals, Afecta Pharmaceuticals, Ajna, Akili Interactive Labs, Alkermes, the American Academy of Child and Adolescent Psychiatry, Axsome Therapeutics, BioExcel, Idorsia, Intracell Therapeutics, IQVIA, MedAvante-Propahse, MJH Life Sciences, NIH, Novartis, Ostuka, Oxford University Press, PaxMedica, Physicians Postgraduate Press, Q BioMed, Radius, Receptor Life Sciences, Signant Health, Supernus Pharmaceuticals, Syneos Health, and Tris Pharma; and royalties from the American Psychiatric Press and Sage. MAF declares research support from Janssen; travel and editorial support from the Society of Clinical Child and Adolescent Psychology; and royalties from American Psychiatric Publishing, Guilford Press, and J&K Seminars. JMH declares grants from NIMH (R01 MH106468, R01 MH060698, R01 MH068286). AEH declares grants from NIH. KJ declares grants from NIMH (R01 MH106468, R01 MH060698, R01 MH068286). JLA has given talks at educational events sponsored by Medice, and with all funds received by King’s College London and used for studies of ADHD. JLa declares grants from NIH (R01 MH123443). KL declares support from the Wellcome Trust and the UK Medical Research Council (MRC); and participation on a data safety monitoring board or advisory board from Medice. HL declares grants from Takeda; and payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Takeda, Medice, and Evelus. PH declares grants or contracts from Takeda; and studies of ADHD. JLa declares grants from NIH (R01 MH109791, R15 MH117368). GM declares support from the Italian Ministry of Health, Angelini, Laborer, and Humana; consulting fees from Angelini; and payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Lundbeck and Angelini. PM declares support from the Istituto di Ricoercio e Cura a Carattere Scientifico Fondazione Stella Maris. SO declares grants from NIMH (R43MH112219). PMP declares payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Sandzio, Daiichi Sankyo, Eurofarma, Abbots, Libbs, Instituto Israelita de Pesquisa e Ensino Albert Einstein, and Instituto D’Or de Pesquisa e Ensino. LAR declares grants or contracts from Medice, Novartis/Sandoz, Pfizer, and Takeda; royalties or licenses from Oxford Press ArtMed; consulting fees from Abbott, Achê, Bial, Medice, Novartis/Sandoz, Pfizer, Takeda, and Abdi Ibrahim; payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Abbott, Achê, Bial, Medice, Novartis/Sandoz, Pfizer, Takeda, and Abdi Ibrahim; participation on a data safety monitoring board or advisory board from Abbott, Achê, Bial, Medice, Novartis/Sandoz, Pfizer, Takeda, and Abdi Ibrahim; participation on a data safety monitoring board or advisory board from UpToDate. Rab declares consulting fees, payment, or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events and support for attending meetings and travel from Janssen. ACY declares consulting fees from Knight Therapeutics. WLC declares grants from the National Institute of Health (NIH), and the US Food and Drug Administration; royalties or licenses from Biomarin, Bracket Global, Cogstate, Ingenx, MedAvante-Propahse, Takeda, Sunovion Pharmaceuticals, and Theravance Biopharma; royalties from a copyrighted rating scale used for ADHD diagnoses paid to the Department of Psychiatry at Massachusetts General Hospital; consulting fees from Cowen Healthcare Investments; payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from the University of California, Davis, Massachusetts Psychiatry Academy, MedLearning, New York University, the American Academy of Child and Adolescent Psychiatry, the American Psychiatric Nurses Association, Cogstate, and the Integrative Sciences; and patents planned, issued or pending: US Patent (#14/027,676) for a non-stimulant treatment for ADHD; US Patent (#10,245,271 B2) for a treatment of impaired cognitive flexibility, and patent pending (#61/233,868) on a method to prevent stimulant abuse. BB declares grants or contracts from NIMH; royalties or licenses from UpToDate. Rab declares consulting fees, payment, or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events and support for attending meetings and travel from Janssen. ACG declares consulting fees from Knight Therapeutics. WLC declares grants from the Australian Research Council (DP190102441 and DP190102445). HDG declares grants or contracts from the Scientific and Technological Research Council of Türkiye. SVF declares income, travel expenses, and continuing education support or research support from Aardvark, Aardwolf, AINM, Tris, Ostuka, Ironshore, Kanjo, Johnson & Johnson/ Janssen, KenPharm/Corium, Akili, Supernus, Atentiv, Noven, Sky Therapeutics, Axsome, and Genomind; holding US patent US20130217707 A1 with his institution for the use of sodium-hydrogen ion exchange inhibitors in the treatment of ADHD; royalties from books published by Guilford Press: Straight talk about your child’s mental health, Oxford University Press: Schizophrenia: the facts, and Elsevier: ADHD: Non-Pharmacologic Interventions; and being Program Director of www.ADHDEvidence.org and www.ADHDDinAdults.com. RF declares grants or contracts from AbbVie, Arbor, Lundbeck, Neurim Pharmaceuticals, NIH, PaxMedica, the Patient-Centered Outcomes Research Institute, Pfizer, Sunovion Pharmaceuticals, Supernus Pharmaceuticals, Takeda, and Viatris; consulting fees from Acadia, Adams Pharmaceuticals, Afecta Pharmaceuticals, Ajna, Akili Interactive Labs, Alkermes, the American Academy of Child and Adolescent Psychiatry, Axsome Therapeutics, BioExcel, Idorsia, Intracell Therapeutics, IQVIA, MedAvante-Propahse, MJH Life Sciences, NIH, Novartis, Ostuka, Oxford University Press, PaxMedica, Physicians Postgraduate Press, Q BioMed, Radius, Receptor Life Sciences, Signant Health, Supernus Pharmaceuticals, Syneos Health, and Tris Pharma; and royalties from the American Psychiatric Press and Sage. MAF declares research support from Janssen; travel and editorial support from the Society of Clinical Child and Adolescent Psychology; and royalties from American Psychiatric Publishing, Guilford Press, and J&K Seminars. JMH declares grants from NIMH (R01 MH106468, R01 MH060698, R01 MH068286). AEH declares grants from NIH. KJ declares grants from NIMH (R01 MH106468, R01 MH060698, R01 MH068286). JLA has given talks at educational events sponsored by Medice, and with all funds received by King’s College London and used for studies of ADHD. JLa declares grants from NIH (R01 MH123443). KL declares support from the Wellcome Trust and the UK Medical Research Council (MRC); and participation on a data safety monitoring board or advisory board from Medice. HL declares grants from Takeda; and
includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. ALSPAC is a prospective population-based study in the UK. Pregnant women resident in Avon, UK, with expected dates of delivery between April 1, 1991 and Dec 31, 1992 were invited to take part in the study. An initial 14 541 women returned a questionnaire or attended a clinic subsequently. From these pregnancies, 13 988 children were alive at 1 year of age. When the oldest children were approximately 7 years of age, an attempt was made to bolster the initial sample with eligible cases who had failed to join the study originally. The total eligible sample at age is therefore 15 447 pregnancies, resulting in 15 658 fortuities. Of these, 14 901 children were alive at 1 year of age. The study website contains details of all the data available through a fully searchable data dictionary and variable search tool (https://www.bristol.ac.uk/alspac/researchers/our-data/). Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Consent for biological samples was collected in accordance with the Human Tissue Act (2004). Informed consent for the use of data collected via questionnaires and clinics was obtained from participants following the recommendations of the ALSPAC Ethics and Law Committee at the time. The MRC and Wellcome Trust (27065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. A comprehensive list of grant funding is available at https://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf. Berkeley Girls with ADHD Longitudinal Study cohort: this research was supported by funding from NIMH (R01 45064) to SPH. Brazilian High Risk Cohort: this work was supported by the National Institute of Developmental Psychiatry for Children and Adolescents (Fapesp 2014/50917-0, CNpq 465550/2014-2), the National Center for Research and Innovation in Mental Health (Fapesp 2021/12901-9), and Banco Industrial do Brasil S/A. Children’s Attention Project cohort: the Children’s Attention Project was funded by grants from the NIH (R01MH087942 and R01MH087943) and the Collier Foundation. Child and Adolescent Twin Study in Sweden: we acknowledge The Swedish Twin Registry for access to data. The Swedish Twin Registry is managed by Karolinska Institutet and receives funding through the Swedish Research Council (2017-0643). The Child Development Project cohort: the Child Development Project has been funded by NIMH (MH58961, MH157024, and MH157959), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD30572), and the National Institute on Drug Abuse (DA016903). China Jintan Child Cohort Study cohort: the China Jintan Child Cohort Study was funded by NIH (R01-ES-018858, K02-ES-019878, R01-ES015877, P30-ES013508). Cardiff Longitudinal ADHD Sample Study cohort: this research was funded by the MRC (G0100632), the Wellcome Trust (079711), Articial Medical Research, and the Daily Thomas Charitable Fund. Danish National Birth Cohort (DNBC): this cohort was established with a significant grant from the Danish National Research Foundation, with additional support from the Danish Regional Committees, the Pharmacy Foundation, the Egmont Foundation, the March of Dimes Birth Defects Foundation, the Health Foundation, and other minor grants. The DNBC Biobank has been supported by the Novo Nordisk Foundation and the Lundbeck Foundation. Follow-ups of mothers and children have been supported by the Danish Medical Research Council (SSVF 0646, 271-08-0839/06-066023, 0602-010428, 0602-027388), the Lundbeck Foundation (195/04, R100-A939), Innovation Fund Denmark (0603-00294E, 09-067124), the Nordea Foundation (02-2013-104), Aarhus Ideas (AU R9-A959-13-804), University of Copenhagen Strategic Grant (FYSV 2012), and the Danish National Research Foundation (DFF-4183-03594, DFF-4183-00152). Environmental Risk Study cohort: the Environmental Risk Study is funded by grants from the MRC (G1002190, MRX010791/1). Study of Cardiovascular Risk in Adolescents (ERICA) cohort: this project was funded by a grant from the Swedish Council for Health, Working Life and Welfare (2002-00630). Fenesy cohort: this research was funded by NIH (R01AA020186 awarded to SSJ). Generation R Study cohort: the general design of the Generation R Study is supported by the Erasmus Medical Center, Erasmus University Rotterdam, the Netherlands Organisation for Health Research and Development, the Netherlands Organisation for Scientific Research (NWO), the Ministry of Health, Welfare and Sport, the Municipal Health Service for the Rotterdam area, and the Stichting Trombose Dienst and ArterioLaboratorium Rijnmond. Great Smoky Mountains Study cohort: The Great Smoky Mountains Study has been funded by various NIH Institutes over the past 25 years. International Multi-centre ADHD Gene (IMAGE)-UK/Sibling EEG Follow-up Study cohort: this project was supported by generous grants from Action Medical Research and the Peter Sowerby Charitable Foundation (GN377 awarded to JK). Initial sample recruitment of the ADHD sample was supported by NIMH (R01MH062873 awarded to SVF). The recruitment of the control sample and initial cognitive assessments of ADHD and control groups were supported by the MRC (G0300189 awarded to JK). Infancia y Medio Ambiente (Environment and Childhood) cohort: this study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176, CB06/02/0041, P1041436, P104/2018, P1081511) European Regional Development Fund (ERDF) funds, P101/0203211 including ERDF funds, P111/00299 including ERDF funds, P113/00154 including ERDF funds, P116/00128 including ERDF funds, P13/0054 including ERDF funds, P13/00154 including ERDF funds, P17/00154 including ERDF funds, P18/00154 including ERDF funds, P18/00999 including ERDF funds, P18/00078 including ERDF funds). Michael Servet (CP11/090015), the Center for Biomedical Research in Epidemiology and Public Health Network, Fundación Cajasjuy, Universidad de Oviedo, Generalitat de Catalunya CIRIT (1999SGR 02041), Generalitat de Catalunya AGRUAR (2014 SGR 501, 2014 SGR 822), Fundació La Marató de TV3 (094030), the Spanish Ministry of Economy and Competitiveness (SAF2012-32991 including ERDF funds). Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (1262C0010; EST-2016 RF-2), the EU Commission (261357, 308313, 63794, 634453), and Margarita Salas (MS21-125), and co-funded by the European Union: NextGenerationEU. We acknowledge support from the grant CEX2018-000806-S funded by MCIN/AEI (10.13039/50110001033), and support from the Generalitat de Catalunya through the CERCA programme. Longitudinal Assessment of Manic Symptoms (LAMS) cohort: the LAMS study was supported by NIH (R01MH73967, R01MH73981, R01MH73953, and R01MH73816). The LAMS Group includes EAY, MAF, LEA, BB, RLF, and Sarah M Horwitz, as well as principal investigators for performance sites and coinvestigators on the Steering and Publication Committee for the LAMS Consortium. Lillehammer Neurodevelopmental Follow-Up Study cohort: this research was supported by the Innlandet Hospital Trust (150663, 150610, 150616, 150186), the South-Eastern Norway Regional Health Authority (150663), and the Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias, Department of Rare Disorders and Disabilities, Oslo University Hospital (150616, 150182). Longitudinal Study of Urban Youth cohort: this research was funded by NIH (R01MH064648 and R01MH066998, principal investigator [MHI]). Maso investigator: GM and PM were supported by a grant from the Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Stella Maris (Ricerca Corrente) and by the “Grand’Oro” voluntary contributions (Italian Ministry of Health). Millennium Cohort Study: we are grateful to the Centre for Longitudinal Studies, University College London Social Research Institute for the use of these data, and to the UK Data Service for making them available. However, neither the Centre for Longitudinal Studies nor the UK Data Service bears any responsibility for the analysis or interpretation of these data. Minnesota Longitudinal Study of Risk and Adaptation cohort: this research was supported by grants from NIMH to Byron Egeland, L Alan Sroufe, and W Andrew Collins (R01-MH40864) and to JAS (R01-MH49599); a National Institute for Child Health and Human Development Grant to W Andrew Collins, Byron Egeland, and L Alan Sroufe (R01-HD054850); and a National Institute on Aging grant to JAS (R01-AG03953). NeuroIMAGE cohort: funding support for the IMAGE project was provided by NIH (R01MH162873, R01MH108183 awarded to SVF). The follow-up and extension studies of the NeuroIMAGE project were
supported by an NWO Large Investment Grant (1750100207030) and an NWO Brain & Cognition: an Integrated Approach grant (433-09-242 awarded to Jan K Ruttenaer), and grants from Radboud University Nijmegen Medical Center, University Medical Center Groningen and Aaccare, Vrije Universiteit Amsterdam, and the European College of Neuropsychopharmacology Network ADHD across the lifespans. Netherlands Twin Registry cohort: “Genotype/phenotype database for behavior genetic and genetic epidemiological studies” (ZonMW Middelgroot 911-09-012); “Why some children thrive” (OCW_Gravity programme NWO-024.001.003); “The impact of parental genes on offspring health: nurture via nature” (NWO-Hestia: ViD.W.I15.19.013); “Netherlands Twin Registry Repository: researching the interplay between genome and environment” (NWO-Groot 480-15-001674); “Genetics of mental illness” (European Research Council Advanced Grant 230374). New York State cohort: this research was supported by NIH (R01DA016079, R01MH108579) and the Scientific and Technological Research Council Of Turkey (10598192101153). Otago cohort: data collection was funded by grants from Lottery Health Research, the Health Research Council, the New Zealand Neurological Foundation, and the University of Otago. Pelotas cohort: the 2004 Pelotas Birth Cohort was conducted by the Postgraduate Program in Epidemiology at Universidade Federal de Pelotas, with the collaboration of the Brazilian Public Health Association (ABRASCO). It was supported by the Wellcome Trust from 2009 to 2013. WHO, the National Support Program for Centers of Excellence, the Brazilian National Research Council, the Brazilian Ministry of Health, and Children’s Pastorate.

Preschool Depression Study cohort: funded by grants R01 SR01M1090786 and K23 MH18426. Pittsburgh Girls Study cohort: the Pittsburgh Girls Study was supported by NIH (MH10556630, Loeber), Queens College Preschool Project cohort: the project was supported by NIMH (R01 MH168286; principal investigator: MJH). Quebec Newborn Twin Study: The authors are grateful to the children and parents, and to the participating teachers and schools of the Quebec Newborn Twins Study. Special thanks to Joéellyn Malo, Marie-Elyse Bertrand, and Anaïse Fradette for coordinating the data collections over the years, and to Hélène Paradis, Alain Girard, and Bei Feng for data management and analysis. The Quebec Newborn Twins Study was supported by multiple grants from the Fonds de recherche du Québec—Société et Culture, Fonds de recherche du Québec—Santé, the Social Science and Humanities Research Council of Canada, the Canadian Institutes for Health Research, the National Health Research Development Program, St Justine Hospital’s Research Center, Université Laval, and Université du Québec à Montréal (principal investigators: MB, Mara Breiden, Ginette Dionne, Isabelle Ouellet-Morin, and Frank Vitaro). MB and Isabelle Ouellet-Morin are supported by the Canada Research Chair programme. Study of ADHD, Genes and Environment cohort: this research was supported by funding from the Wellcome Trust (079711), MRC (MR/J010305/1), and the Wolfson Foundation. Stony Brook Temperament Study cohort: this study was supported by NIMH (R01 MH069942; principal investigator DNX). Trajectoires Épidémiologiques en Population cohort: the Trajectoires Épidémiologiques en Population cohort received funding from the French National Research Agency, including the Flash COVID-19 funding scheme; the French Institute for Public Health Research-IReSP (TCIR Cohortes); the French Interdepartmental Mission for the Fight against Drugs and Drug Addiction; the French Institute of Cancer; and the Pfizer Foundation. EFFECT-1: a longitudinal study of the role of the early family environment in the development of cognitive self-regulation. This project was funded by The Swedish Research Council (421-2012-1222; grant awarded to KCB) and the Centre for Women’s Mental Health during the Reproductive Lifespan (UTF 2021:1138). Funding support for the IMAGE project was provided by NIH (R01MH162873 and R01MH108103, awarded to SVF). The second follow-up study of the NeurolIMAGE project was supported by an NWO Large Investment Grant (1750102007010) and NWO Brain and Cognition: an Integrative Approach grant (433-09-242, awarded to Jan K Ruttenaer); and financial support from Radboud University Nijmegen Medical Center, University Medical Center Groningen and Aaccare, and Vrije Universiteit Amsterdam. Val-IMAGE: The follow-up and extension studies of the Val-IMAGE project were supported by Generalitat Valenciana (AICO/2018/198). Victorian Infant Brain Studies cohort: this research was supported by the NHMRC (231717, 491209, 1066555; Centre for Research Excellence in Newborn Medicine 1153176; Senior Research Fellowship 1081288; Leadership Fellowship 1176077) and the Victorian Government’s Operational Infrastructure Support Program.

References

