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We also argue for finer-grained 
information that characterizes localities  
and populations most affected. Previous 
research has identified that people who  
are poor or African-American, live in  
coastal and low-lying areas or are outdoor 
workers are at increased risk of climate-
change health effects due to intersecting 
vulnerabilities8–10. A multi-country multi-
city study of suicide and temperature 
that identified nonlinear associations in 
northeast Asia and more linear associations 
in several Western countries (including the 
USA)11 also indicates the need to explore  
the possibility of varying patterns of  
injury–temperature associations in  
different settings.

Climate-change policy presents 
unprecedented opportunities for 
implementing equity-focused public-

health plans that address the synergistic 
and intergenerational effects of multiple 
risk factors and social determinants that 
influence injuries6,12. The need to address 
this is particularly urgent in low- and 
middle-income countries that experience 
over 80% of the global injury burden and are 
generally more vulnerable to the effects of 
extreme weather. ❐
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PUBLIC HEALTH

Implications of legacy lead for children’s brain 
development
Children at a higher risk of lead exposure develop smaller brain cortical surface area and volume, but only if they 
are from low-income families.

Aaron Reuben, Maxwell Elliott and Avshalom Caspi

Although lead has largely been  
banned from gasoline, pipes, paint, 
and other consumer products 

in most countries, legacy lead in the 
environment remains an ongoing hazard 
for children around the world1. Exposure 
to lead, a neurotoxicant, is associated 
with disrupted cognitive and behavioral 
development2. Despite decades of study, 
not enough is known about the structural 
changes in the brain that underlie these 
disruptions, or to what extent they are 
lasting, modifiable, or likely to worsen  
over time. In this issue, Marshall et al.  
report that US children living in 
neighborhoods with higher risks of lead 
exposure develop smaller cortical volumes 
and surface areas if they are from low-
income families but not if they are from 
middle- or high-income families3. The 
authors interpret these brain morphology 
differences, which were accompanied by 
deficits in cognitive test performance, 

as suggesting that the children from 
low-income families are possibly more 
vulnerable to lead’s neurotoxic effects than 
are their more affluent peers.

No level of lead exposure has been 
deemed safe for children. While humans 
have been interacting with lead for 
millennia4, not enough is known about how 
its harms are mediated. Animal studies 
have shown that lead mimics calcium at 
the cellular level5. It is absorbed through 
the gastrointestinal and respiratory tracts, 
binds to erythrocyte proteins in the blood, 
and may pass through the blood–brain 
barrier via calcium ATPase pumps5. Once 
in the brain, lead enters glia and neurons 
through voltage-sensitive calcium channels 
and, there, perturbs calcium homeostasis, 
disrupts mitochondrial function, and 
suppresses neurotransmitter storage and 
release5. Lead’s half-life in the brain is 2 
years, and its presence at even low levels 
during development may disrupt neuronal 

proliferation, differentiation, and synapse 
formation5. However, it is not clear how 
to generalize such findings to humans, 
whose toxicodynamics of lead metabolism, 
removal and vulnerability vary by age, sex, 
and genetics. Owing to its known toxicity 
and persistent use in metalworking, food 
preparation, building materials, and fuel, 
lead―as well as its removal―has been 
invoked to explain a number of historical 
events and trends, from the fall of the 
Roman Empire6, to the rise in IQ across the 
second half of the 20th century7, to the drop 
in urban crime rates in the 1990s8. Such 
arguments have been controversial because, 
among other issues, lead exposure is 
typically entwined with adversities related to 
socio-economic deprivation, including lack 
of access to high-quality housing, nutrition, 
education, and healthcare9. This has led to 
an at times acrimonious area of research, 
sometimes fueled by opinionated financial 
interest from lead-related industries10.
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Marshall et al.3 used cross-sectional 
data from the Adolescent Brain Cognitive 
Development (ABCD) Study, one of 
the world’s largest studies of brain 
development, with 11,878 US participants 
9–10 years of age. The exposure of the 
children in the ABCD cohort to lead 
was estimated on the basis of a proxy 
measure of risk of exposure, calculated as 
a composite of poverty rate and average 
home age within each child’s residential 
census tract. The authors tested whether 
children’s risk of lead exposure is associated 
with differences in their brain structure, 
which was assessed by magnetic resonance 
imaging of the thickness, surface area, and 
volume of the cortex, and their cognitive 
performance, which was assessed by 
cognitive tests from the NIH Toolbox, 
and, if so, whether lead-related outcomes 
would be more pronounced in low-income 
families. They found that, on average, 
children from low-income families growing 
up in neighborhoods at high risk for lead 
exposure developed brains with smaller 
cortical surface areas and volumes than 
those of their peers from low-income 
families growing up in neighborhoods at 

lower risk for lead exposure. These brain 
differences were paralleled by deficits in 
cognitive performance. For children from 
middle- or high-income families, there was 
no significant association between lead-
exposure risk and brain morphology or 
cognitive performance.

Taken together, these results suggest 
that children from low-income families 
may be at higher risk for developmental 
harm from living in high-lead-risk census 
tracts than are their more affluent peers. 
These results warrant further attention but 
for now must be interpreted with caution. 
The children in the ABCD cohort have yet 
to be tested for lead. The risk-of-exposure 
measure used by Marshall et al.3 has been 
shown to associate statistically with actual 
blood-lead levels among participants 
in other studies (b = 0.32; P < .001). 
However, the authors acknowledge that 
this proxy measure does not directly assess 
lead toxicity among children enrolled in 
the ABCD Study. This proxy measure may 
assess lead exposure but may also capture 
the influence of multiple developmental 
risks of growing up poor in census tracts 
with high poverty rates and old homes, 

including, potentially, greater exposure 
to crime, low access to high-quality 
schools and healthcare, lack of parks and 
open spaces, and even exposure to other 
pollutants, such as air pollution.

Marshall et al. have proposed adding 
lead testing to the ABCD cohort3. This 
would add to the understanding of how 
early-life exposure to lead influences brain 
development and just how low blood-
lead levels need to be to ensure healthy 
development. Levels of lead exposure in 
the USA have been decreasing steadily 
for the past 50 years. Correspondingly, 
recommendations for what constitutes 
a worrisome level of lead exposure have 
dropped from 60 micrograms of lead per 
deciliter of blood (60 μg/dl) to 5 μg/dl over 
the same time period (Fig. 1).This means 
that any lead associations found in the 
ABCD cohort reflect the consequences of 
relatively low levels of lead exposure among 
today’s children and may thus underestimate 
the effects that lead has probably had 
on the brain development of yesterday’s 
children. The parents and grandparents of 
children in the ABCD cohort were exposed 
to the highest levels of lead in their own 
childhoods. There is reason to believe 
they will now be at risk for novel brain 
impairments, such as accelerated brain 
aging and neurodegenerative disease11,12, 
owing to several factors, including novel 
neurotoxicity from lead remobilized from 
bone during menopause and osteoporosis, 
lowered neural and cognitive reserve, and 
dormant epigenetic modifications that foster 
protein pathology in late life. The study by 
Marshall et al.3 is an important reminder 
about the potential immediate and lasting 
vulnerability of the brain to childhood lead 
exposure. ❐
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Fig. 1 | Timeline of consumption of lead in gasoline in the USA and mean population blood-lead levels 
across the past 100 years. This plot shows the changes in lead in gasoline that may have affected 
the lead levels in the census tracts in the study by Marshall et al.3., presented as the timeline of US 
consumption of lead in gasoline (metric tons) and mean US population blood-lead levels (in μg/dl). Data 
points are approximations derived from refs. 13–15.
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DIGITAL HEALTH

Diagnosing bias in data-driven algorithms  
for healthcare
A recent analysis highlighting the potential for algorithms to perpetuate existing racial biases in healthcare 
underscores the importance of thinking carefully about the labels used during algorithm development.

Jenna Wiens, W. Nicholson Price II and Michael W. Sjoding

Many data-driven algorithms  
in healthcare map a set of  
patient characteristics to the 

patients’ estimated risk of experiencing  
a future outcome1–3. Such algorithms  
are often used to identify high-risk patients 
for targeted interventions. Recently, 
Obermeyer et al. examined one such 
algorithm currently used by health  
systems in the USA to target patients for 
high-risk care management4. Analyzing 
the algorithm’s predictions by race, where 
race was self-reported and extracted from 
hospital records, they identified racial 
bias in the algorithm. Specifically, black 
patients were less likely to be identified by 
the algorithm as candidates for potentially 
beneficial care programs than were white 
patients who had the same number of 
chronic illnesses.

The commercial algorithm analyzed by 
Obermeyer et al. was trained in a supervised 
learning framework to predict a patient’s 
total medical expenditures in the following 
year, using their age, sex, prescribed 
medications, medical encounters and billed 
amounts during the current year; notably, 
the algorithm did not include race4. Patients 
predicted by the algorithm to be in the 
97th percentile or above in terms of future 
expenditures were automatically enrolled 
in a care program in which patients with 
complex health needs receive additional 
resources, and the primary care physicians 
of patients in the 55th percentile and 
above were asked to consider enrolling 
the patients in this care program. As the 
top 5% of patients account for 50% of 
health spending5, many health systems 

now use similar algorithms to guide care-
management interventions.

The algorithm was marketed as able to 
identify patients with the highest healthcare 
needs, under the assumption that medical 
expenditures equate to healthcare needs, 
and used in such a way that assumes 
that patients with the highest medical 
expenditures are most likely to benefit 
from the intervention. As the authors 
demonstrate, these assumptions result in 
a biased algorithm. They find that among 
individuals predicted to have the same level 
of medical expenditures, black individuals 
actually had more active chronic medical 
conditions than white individuals. Left 
unchecked, this kind of bias becomes 
systematized by the algorithm when used 
by healthcare providers, as black patients 
are disproportionately under-referred to 
additional care programs.

The first assumption, that medical 
expenditures equate to healthcare needs, 
results in label bias in which the label 

used to train the algorithm is only a proxy 
for the true outcome that one ultimately 
cares about. Although assessing total 
healthcare costs is one method that has been 
recommended by the National Academy of 
Medicine for identifying high-need patients6, 
cost is an imperfect proxy for health needs. 
Patients of lower socioeconomic status are 
less likely to access healthcare services, and 
a “lack of trust” or, more precisely, “a lack of 
trustworthiness on the part of the medical 
industry”7 is hypothesized to result in a lack 
of engagement with healthcare by black 
individuals and, hence, in racial disparities 
in healthcare spending.

Rather than changing the statistical 
approach to developing the algorithm, to 
reduce potential bias, Obermeyer et al.  
suggest changing the labels used during 
training4. Working with the original 
developers of the algorithm, they 
experimented with different labels, including 
a formulation that combined an estimate of 
future active medical conditions and future 
costs. This reformulation led to a reduction 
in bias by over 80%. When developing data-
driven algorithms for healthcare, we should 
think carefully about the labels used  
during training.

Beyond cost, many other labels are 
vulnerable to bias, including other 
commonly considered outcomes such as 
sepsis or healthcare-associated infections8. 
These labels rely on clinical tests that  
require a clinician to recognize symptoms 
and place an order. This can result in  
delays if symptoms go unnoticed, or false 
negatives if patients are never tested. If 
certain subpopulations are systematically 
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