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Abstract

IMPORTANCE Gait speed is a well-known indicator of risk of functional decline and mortality in
older adults, but little is known about the factors associated with gait speed earlier in life.

OBJECTIVES To test the hypothesis that slow gait speed reflects accelerated biological aging at
midlife, as well as poor neurocognitive functioning in childhood and cognitive decline from childhood
to midlife.

DESIGN, SETTING, AND PARTICIPANTS This cohort study uses data from the Dunedin
Multidisciplinary Health and Development Study, a population-based study of a representative 1972
to 1973 birth cohort in New Zealand that observed participants to age 45 years (until April 2019).
Data analysis was performed from April to June 2019.

EXPOSURES Childhood neurocognitive functions and accelerated aging, brain structure, and
concurrent physical and cognitive functions in adulthood.

MAIN OUTCOMES AND MEASURES Gait speed at age 45 years, measured under 3 walking
conditions: usual, dual task, and maximum gait speeds.

RESULTS Of the 1037 original participants (91% of eligible births; 535 [51.6%] male), 997 were alive
at age 45 years, of whom 904 (90.7%) had gait speed measured (455 [50.3%] male; 93% white).
The mean (SD) gait speeds were 1.30 (0.17) m/s for usual gait, 1.16 (0.23) m/s for dual task gait, and
1.99 (0.29) m/s for maximum gait. Adults with more physical limitations (standardized regression
coefficient [β], −0.27; 95% CI, −0.34 to −0.21; P < .001), poorer physical functions (ie, weak grip
strength [β, 0.36; 95% CI, 0.25 to 0.46], poor balance [β, 0.28; 95% CI, 0.21 to 0.34], poor visual-
motor coordination [β, 0.24; 95% CI, 0.17 to 0.30], and poor performance on the chair-stand [β,
0.34; 95% CI, 0.27 to 0.40] or 2-minute step tests [β, 0.33; 95% CI, 0.27 to 0.39]; all P < .001),
accelerated biological aging across multiple organ systems (β, −0.33; 95% CI, −0.40 to −0.27;
P < .001), older facial appearance (β, −0.25; 95% CI, −0.31 to −0.18; P < .001), smaller brain volume
(β, 0.15; 95% CI, 0.06 to 0.23; P < .001), more cortical thinning (β, 0.09; 95% CI, 0.02 to 0.16;
P = .01), smaller cortical surface area (β, 0.13; 95% CI, 0.04 to 0.21; P = .003), and more white matter
hyperintensities (β, −0.09; 95% CI, −0.15 to −0.02; P = .01) had slower gait speed. Participants with
lower IQ in midlife (β, 0.38; 95% CI, 0.32 to 0.44; P < .001) and participants who exhibited cognitive
decline from childhood to adulthood (β, 0.10; 95% CI, 0.04 to 0.17; P < .001) had slower gait at age
45 years. Those with poor neurocognitive functioning as early as age 3 years had slower gait in midlife
(β, 0.26; 95% CI, 0.20 to 0.32; P < .001).
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Abstract (continued)

CONCLUSIONS AND RELEVANCE Adults’ gait speed is associated with more than geriatric
functional status; it is also associated with midlife aging and lifelong brain health.

JAMA Network Open. 2019;2(10):e1913123. doi:10.1001/jamanetworkopen.2019.13123

Introduction

The ability to walk and gait speed depend on the function and interplay of the musculoskeletal,
visual, central nervous, and peripheral nervous systems, as well as aerobic capacity, cardiorespiratory
fitness, and energy production and delivery.1,2 Reduced gait speed is a sign of advancing age3; it is
associated with poorer response to rehabilitation, age-related diseases, including cardiovascular
disease and dementia, and early mortality.4-6

Gait speed is frequently used in geriatric settings as a quick, simple, and reliable way of
estimating older patients’ functional capacity. It is increasingly recognized that gait is associated with
not only musculoskeletal mechanisms but also with the central nervous system (CNS).4,7 To date,
longitudinal research on gait and cognitive functioning has primarily focused on older adults, many
with neurological diseases.8 Few studies have integrated cognitive and structural measures of the
CNS with gait in healthy midlife adults, and, to our knowledge, none has examined the childhood CNS
origins of gait. Filling this information gap is important for understanding the origins of gait speed
and for prevention of functional disability. If gait speed is antedated by early-life CNS variation, this
would point to possibilities for early identification of vulnerability and resilience in functional capacity
well before late life and suggest potential targets for early intervention.

Herein, we evaluated 2 hypotheses. First, we tested the hypothesis that slow gait speed at
midlife—when adults are still in their robust 40s—already reflects early signs of accelerated biological
aging. If so, this would imply that gait speed could be used as an earlier indicator of aging in aging-
prevention trials. Second, we tested the hypothesis that slow gait speed is associated with poor
neurocognitive functioning at midlife and also in early childhood. If so, this would imply that gait
speed has origins in brain development beginning in childhood and manifesting in midlife. Support
for our hypotheses would suggest rethinking gait speed, from a geriatric index of adult functional
decline to a summary index of lifelong aging with possible origins in childhood CNS deficits.

Methods

Study Design and Population
Participants are members of the Dunedin Multidisciplinary Health and Development Study, a
longitudinal investigation of health and behavior in a representative birth cohort. The 1037
participants (91% of eligible births) were all individuals born between April 1972 and March 1973 in
Dunedin, New Zealand, who were eligible on the basis of residence in the province and who
participated in the first assessment at age 3 years.9 The cohort represents the full range of
socioeconomic status (SES) in the general population of New Zealand’s South Island and, as adults,
matches the New Zealand National Health and Nutrition Survey on key adult health indicators (eg,
body mass index, smoking, and general practitioner visits) and the New Zealand Census of citizens of
the same age on educational attainment. Participants are primarily white (93%, self-identified),
matching South Island demographic characteristics.9 Assessments were performed at birth; at ages
3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, and 38 years; and, most recently (completed April 2019), at age 45
years, when 938 of the 997 participants (94.1%) still alive participated. At each assessment, each
participant was brought to the research unit for interviews and examinations. Written informed
consent was obtained from cohort participants, and study protocols were approved by the
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institutional ethical review boards of the participating universities. This study follows the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Gait Speed
Gait speed (meters per second) was assessed with the 6-m-long GAITRite Electronic Walkway (CIR
Systems, Inc) with 2-m acceleration and 2-m deceleration before and after the walkway, respectively.
We excluded 4 participants who could not be tested because of disabling conditions (eg, amputation
or broken leg). Gait speed was assessed under 3 walking conditions: usual gait speed (walk at normal
pace from a standing start, measured as a mean of 2 walks) and 2 challenge paradigms, dual task gait
speed (walk at normal pace while reciting alternate letters of the alphabet out loud, starting with the
letter “A,” measured as a mean of 2 walks) and maximum gait speed (walk as fast as safely possible,
measured as a mean of 3 walks).

Composite Gait Speed
Gait speed was correlated across the 3 walk conditions: usual vs dual task, usual vs maximum, and
dual task vs maximum (Figure 1). To increase reliable measurements and take advantage of the
variation in all 3 walk conditions (usual gait and the 2 challenge paradigms), we calculated the mean
of the 3 individual walk conditions to generate our primary measure of composite gait speed
(eFigure 1 in the Supplement).

Figure 1. Distribution of Gait Speed for Participants in the Dunedin Multidisciplinary Health and Development Study at Age 45 Years
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Gait speed distributions for individual walk conditions (usual, dual task, and maximum) are depicted as histograms. Scatterplots illustrate the pairwise correlations between individual
walk conditions. The blue lines are linear regression lines.
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Physical Function
Physical function at age 45 years was assessed by self-reported physical limitations using the RAND
36-Item Short Form Survey,10 with reversed scores to reflect limitations. Physical function was also
assessed by several brief exercises that index the ability to perform everyday activities, including
handgrip strength,11,12 balance,13-15 visual-motor coordination,16 chair-stand test,17,18 and 2-minute
step test18,19 (eMethods 1 in the Supplement).

Measures of Accelerated Aging
Accelerated aging was assessed by 2 measures: pace of aging20 and facial age20 (eMethods 1 in the
Supplement). The pace of aging was measured for each participant with repeated assessments of a
panel of 19 biomarkers taken at ages 26, 32, 38, and 45 years.20 The 19 biomarkers were body mass
index, waist-to-hip ratio, glycated hemoglobin level, leptin level, blood pressure (mean arterial
pressure), cardiorespiratory fitness (maximum oxygen consumption [VO2max]), forced expiratory
volume in 1 second (FEV1), ratio of forced expiratory volume in 1 second to forced vital capacity
(FEV1/FVC), total cholesterol level, triglyceride level, high-density lipoprotein cholesterol level, ratio
of apolipoprotein B100 to apolipoprotein A1, lipoprotein(a) level, creatinine clearance, blood urea
nitrogen level, C-reactive protein level, white blood cell count, gum health, and caries-affected tooth
surfaces. Change over time in each biomarker was modeled with mixed-effects growth models, and
these rates of change were combined into a single index scaled (by sex) in years of physiological
change occurring per 1 chronological year. Participants ranged in their pace of aging from
approximately 0 years of physiological change per chronological year to approximately 3 years of
physiological change per chronological year. Facial age was evaluated on the basis of ratings by an
independent panel of 8 raters of standardized photographs of each participant’s face made during
their assessment at age 45 years.

Brain Structure and Neurocognitive Functions
At age 45 years, participants completed a neuroimaging protocol to detect structural age-related
features of the brain. Images (T1-weighted structural and fluid-attenuated inversion recovery) were
acquired using a 3-T magnetic resonance imaging scanner (Skyra; Siemens Healthcare) equipped
with a 64-channel head and neck coil. High-resolution structural images were used to generate
estimates of total brain volume, mean cortical thickness, total surface area, and white matter
hyperintensities (eMethods 1 in the Supplement). Total white matter hyperintensities were
log-transformed (natural logarithm) to improve normality.

Neurocognitive function at age 45 years was assessed with the Wechsler Adult Intelligence
Scale–IV.21 The Wechsler Adult Intelligence Scale–IV generates the overall full-scale IQ. In addition, 4
Wechsler Adult Intelligence Scale–IV indexes assess the abilities that make up the IQ: processing
speed, working memory, perceptual reasoning, and verbal comprehension. In addition, the Trail-
Making Test,22 Animal Naming Test, Wechsler Memory Scale–Mental Control, and the Rey Auditory
Verbal Learning Test of Memory16 were administered at age 45 years to assess executive functioning,
verbal fluency, and memory (eMethods 1 in the Supplement). Trail-Making Test scores were reversed
so that higher values corresponded to better cognitive performance.

Measures of Childhood Neurocognitive Functions and Childhood SES
At age 3 years, each child participated in a 45-minute examination that included assessments by a
pediatric neurologist; standardized tests of intelligence, receptive language, and motor skills; and
examiner ratings of each child’s emotional and behavioral regulation. These 5 measures were
combined to yield a composite index of brain health (eMethods 2 in the Supplement).23 Childhood-
to-adulthood cognitive decline was calculated by a difference between scores on the Wechsler Adult
Intelligence Scales and the Wechsler Intelligence Scale for Children–Revised.24 These tests are ideal
for measuring childhood-to-adulthood cognitive decline because both tests are matched for content
coverage and format, both were individually administered by trained psychometrists, and both yield
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summary scores that are reliable at greater than 0.95. Mean scores for the Wechsler Intelligence
Scale for Children–Revised across administration at ages 7, 9, and 11 years were calculated (eMethods
2 in the Supplement). The SES of participants’ childhood families was measured using the 6-point
Elley-Irving Socioeconomic Index for New Zealand.25

Statistical Analysis
Continuous measures are presented as mean (SD) or median (interquartile range). We calculated
Pearson correlation coefficients (r). We performed linear regression analyses with all variables
standardized to mean = 0 and SD = 1, and we present standardized regression coefficients (β) for the
associations between individual factors with gait speed, adjusted for sex. Associations were further
adjusted for leg length, body composition (fat mass and lean mass), or childhood SES. These results
are presented in eTables 1, 2, 3, and 4 in the Supplement; further details about the measurement of
leg length, fat mass index, and lean mass index are provided in eMethods 1 in the Supplement. We
applied Bonferroni correction to account for multiple testing within domain sets of measures
(physical function, accelerated aging, brain structure, and neurocognitive function).

Statistical analyses were performed in SAS Enterprise Guide statistical software version 7.15
(SAS Institute). Analyses reported here were checked for reproducibility by an independent data
analyst, who recreated the code by working from the manuscript and applied it to a fresh copy of the
data set. Two-sided P < .05 (Fisher exact test) was a priori designated as statistically significant. We
present effect sizes, 95% CIs, and actual P values for all tests conducted. Data analysis was
performed from April to June 2019.

Results

Of 1037 participants in the original cohort (535 [51.6%] male), 997 were still alive at age 45 years, and
938 took part in the assessment at age 45 years between April 2017 and April 2019. Of the 997 still
alive, 904 (90.7%; 455 [50.3%] male; 93% white) completed the gait test and were included in this
study. Participants with gait speed data available did not differ significantly from other living
participants in terms of childhood SES or childhood neurocognitive functioning (see attrition analysis
in eMethods 3 in the Supplement). Table 1 shows the demographic characteristics and mean (SD) for
measures of gait speed, physical function (mean [SD], physical limitation score, 10.2 [15.4]; maximum
handgrip strength, 39.8 [12.0] kg; 1-legged balance, 14.8 [9.8] seconds; visual-motor coordination,
71.4 [12.6] seconds; number of chair stands in 30 seconds, 18.3 [5.6]; and 2-minute step test, 115.5
[26.6] steps), accelerated aging (mean [SD], pace of aging score, 0.99 [0.31]; facial age score, −0.004
[1.00]), brain structure (mean [SD], total brain volume, 1 160 304.5 [116 687.8] mm3; mean cortical
thickness, 2.56 [0.09] mm; total surface area, 185 514.9 [16 350.8] mm2; and total log-transformed
white matter hyperintensities, 936.2 [1050.8] mm3), and neurocognitive function (mean [SD],
childhood brain health z score, 0.05 [0.93]; total IQ, 100.1 [14.9]). Gait speed was normally
distributed under all walk conditions, with larger variation in gait speed during the dual task and
maximum walk conditions (usual vs dual task, r = 0.75 [95% CI, 0.72-0.77], P < .001; usual vs
maximum, r = 0.46 [95% CI, 0.41-0.51], P < .001; and dual task vs maximum, r = 0.45 [95% CI, 0.40-
0.50], P < .001) (Figure 1). The mean (SD) usual gait speed was 1.30 (0.17) m/s; dual task gait speed,
1.16 (0.23) m/s; and maximum gait speed, 1.99 (0.29) m/s. The mean (SD) composite gait speed was
1.48 (0.19) m/s. The median (interquartile range) usual gait speed was 1.30 (1.18-1.40) m/s; dual task
gait speed, 1.17 (1.03-1.31) m/s; maximum gait speed, 1.96 (1.80-2.15) m/s; and composite gait speed,
1.48 (1.35-1.60) m/s. One-week gait speed test-retest reliabilities (50 participants) were r = 0.77
(95% CI, 0.62-0.86; P < .001) for usual gait speed, r = 0.86 (95% CI, 0.75-0.91; P < .001) for dual task
gait speed, r = 0.74 (95% CI, 0.58-0.84; P < .001) for maximum gait speed, and r = 0.77 (95% CI,
0.62-0.86; P < .001) for composite gait speed. Later in the article, we describe associations between
composite gait speed and measures in domains of physical function, accelerated aging, brain
structure, and neurocognitive function. Each of the 3 individual walk conditions yielded the same
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pattern of associations as did composite gait speed (Table 2; eTable 3 and eTable 4 in the
Supplement). All associations were independent of leg length and body composition (lean mass and
fat mass) (eTable 1 and eTable 2 in the Supplement) as well as childhood SES (eTable 3 and eTable 4
in the Supplement), except white matter hyperintensities, which became nonsignificant when we
controlled for body composition and childhood SES. When correcting for multiple testing within each
domain, all measures remained significantly associated with gait speed.

Gait Speed and Physical Function and Accelerated Aging at Age 45 Years
Midlife adults who self-reported more physical limitations in their day-to-day life had slower gait
speed (β, −0.27; 95% CI, −0.34 to −0.21; P < .001). In addition, adults with weaker grip strength (β,
0.36; 95% CI, 0.25-0.46; P < .001), poorer balance (β, 0.28; 95% CI, 0.21-0.34; P < .001), and poorer
visual-motor coordination (β, 0.24; 95% CI, 0.17-0.30; P < .001) and those who performed worse on

Table 1. Characteristics of Participants With Gait Speed Data

Characteristic
Participants, No.
(N = 904)a Mean (SD)

Childhood socioeconomic status score 899 3.78 (1.13)

Gait speed, m/s

Usual 904 1.30 (0.17)

Dual task 904 1.16 (0.23)

Maximum 904 1.99 (0.29)

Composite 904 1.48 (0.19)

Physical function

Physical limitation scoreb 901 10.2 (15.4)

Maximum handgrip strength, kg 903 39.8 (12.0)

One-legged balance, s 897 14.8 (9.8)

Visual-motor coordination, sc 899 71.4 (12.6)

Chair stands, No. in 30 s 873 18.3 (5.6)

2-min step test, No. of steps 886 115.5 (26.6)

Accelerated aging

Pace of aging scored 903 0.99 (0.31)

Facial age score 902 −0.004 (1.00)

Brain structure

Total brain volume, mm3 859 1 160 304.5 (116 687.8)

Mean cortical thickness, mm 859 2.56 (0.09)

Total surface area, mm2 859 185 514.9 (16 350.8)

Total log-transformed white matter hyperintensities, mm3e 849 936.2 (1050.8)

Neurocognitive function

Childhood brain health z score 902 0.05 (0.93)

Total IQ 902 100.1 (14.9)

Processing speed 902 100.1 (15.0)

Working memory 898 100.1 (15.0)

Perceptual reasoning 902 100.1 (14.9)

Verbal comprehension 892 100.0 (15.0)

Trail-Making Test, s

Part A 901 30.2 (9.9)

Part B 902 68.4 (22.5)

Animal Naming Test, No. in 60 s 895 23.4 (5.8)

Wechsler Memory Scale–Mental Control scoref 888 3.05 (1.34)

Rey Auditory Verbal Learning test score

Total 902 35.7 (7.4)

Recall 898 8.7 (2.9)

a A total of 455 participants (50.3%) were male.
b Measured according to the RAND 36-Item Short

Form Survey physical functioning scale with reversed
scores to reflect limitations.10

c Grooved pegboard test, time (seconds) for
nondominant hand.

d Years of physiological change per chronological year.
e Natural logarithm.
f Naming the months backward.
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the chair-stand (β, 0.34; 95% CI, 0.27-0.40; P < .001) or 2-minute step tests (β, 0.33; 95% CI, 0.27-
0.39; P < .001) had slower gait (Table 2).

Midlife adults who exhibited signs of accelerated aging also had slower gait (Table 2). Slower
gait was associated with a more rapid pace of aging (β, −0.33; 95% CI, −0.40 to −0.27; P < .001);
according to the pace of aging index, participants with the slowest gait (bottom quintile; mean [SD]
composite gait speed, 1.21 [0.10] m/s) had been aging 5.0 years faster from ages 26 to 45 years than
participants with the fastest gait (top quintile; mean [SD] composite gait speed, 1.75 [0.10] m/s)
(Figure 2A; eFigure 2 in the Supplement). In addition, the faces of slow-gaited adults were rated as
looking older (β, −0.25; 95% CI, −0.31 to −0.18; P < .001) (Figure 2B).

Gait Speed, Brain Structure, and Neurocognitive Functions at Age 45 Years
Midlife adults with smaller total brain volume (β, 0.15; 95% CI, 0.06 to 0.23; P < .001), thinner mean
cortex (β, 0.09; 95% CI, 0.02 to 0.16; P = .01), smaller total brain surface area (β, 0.13; 95% CI, 0.04
to 0.21; P = .003), or a higher volume of white matter hyperintensities (β, −0.09; 95% CI, −0.15 to
−0.02; P = .01) had slower gait (Table 2; Figure 3). The association between white matter
hyperintensities and gait was not significant after controlling for body composition or childhood SES.
These brain features (volume, cortical thickness, surface area, and white matter hyperintensity
burden) are known to be associated with cognitive functioning, as confirmed by their associations
with IQ (Figure 3). Next, we tested whether neurocognitive functioning at age 45 years was also
associated with gait speed. Participants with lower IQ at age 45 years had slower gait (β, 0.38; 95%
CI, 0.32 to 0.44; P < .001) (Table 2). The cognitive impairment of those with slow gait was apparent

Figure 2. Accelerated Aging, Poor Childhood Neurocognitive Function, and Cognitive Decline Associated
With Slower Midlife Gait Speed
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(B), and mean brain health at age 3 years (z score;
mean = 0, SD = 1) (C) by gait speed quintiles at age 45
years are shown. Generalized additive models are
shown in eFigure 2 in the Supplement. D, The
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speed quintiles is also shown. Gait speed quintiles are
defined as follows: quintile 1, less than 1.32 m/s (181
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participants); quintile 3, 1.44 to 1.52 m/s (181
participants); quintile 4, 1.53 to 1.63 m/s (181
participants); and quintile 5, greater than 1.63 m/s (180
participants). Error bars indicate standard error.
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Figure 3. Associations Between Brain Structure With IQ and With Gait Speed at Age 45 Years
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across multiple neuropsychological domains: they had slower processing speed (β, 0.30; 95% CI,
0.23 to 0.36; P < .001), poorer working memory (β, 0.32; 95% CI, 0.26 to 0.38; P < .001), poorer
perceptual reasoning (β, 0.29; 95% CI, 0.22 to 0.35; P < .001), and poorer verbal comprehension (β,
0.30; 95% CI, 0.24 to 0.37) (Table 2). In addition, adults who performed worse on the Trail-Making
Test (part A: β, 0.26; 95% CI, 0.20 to 0.33; part B: β, 0.22; 95% CI, 0.16 to 0.29; P < .001 for both),
Animal Naming Test (β, 0.23; 95% CI, 0.16 to 0.29; P < .001), Wechsler Memory Scale–Mental Control
(β, 0.20; 95% CI, 0.13 to 0.26; P < .001), and the Rey Auditory Verbal Learning Test of Memory (total,
β, 0.33; 95% CI, 0.27 to 0.39; recall, β, 0.22; 95% CI, 0.15 to 0.29; P < .001 for both) had slower gait
(Table 2).

Childhood Neurocognitive Functioning and Gait Speed at Midlife
The contemporaneous association between gait speed and neurocognitive functioning at midlife was
foreshadowed by cognitive differences already apparent in childhood (Figure 2C and D). We looked
back to data obtained when participants were aged 3 years to test the longitudinal association
between childhood brain health assessed during a pediatric examination and midlife gait. Indications
of poor brain health at age 3 years were associated with slow gait at age 45 years (β, 0.26; 95% CI,
0.20-0.32; P < .001) (Figure 2C). Sensitivity analyses revealed that the following components of
brain health at age 3 years were each significantly associated with gait speed: picture vocabulary,
receptive language skills, motor skills, and lack of control (eTable 5 in the Supplement). The
association between childhood brain health and adult gait speed held after controlling for childhood
SES (β, 0.21; 95% CI, 0.15-0.28; P < .001). A decline on Wechsler testing from childhood to adulthood
was associated with slower gait speed at midlife (β, 0.10; 95% CI, 0.04-0.17; P < .001) (Figure 2D),
even after controlling for childhood SES (β, 0.11; 95% CI, 0.05-0.18; P < .001).

Discussion

Gait speed is used primarily to monitor the functional capacity of older adults and to forecast their
rate of age-related decline. Our findings suggest that gait speed may not only be a geriatric concern.
In this 5-decade longitudinal study of a population-representative birth cohort, gait speed measured
at age 45 years was already associated with physical and biological indicators of accelerated aging.
Beyond accelerated aging, gait speed was associated with lifelong compromised brain health and
neurocognitive functioning beginning as early as age 3 years. Notably, gait speed under the 3
separate walk conditions shared the same associations, albeit with larger effect sizes for the 2
challenge walks, especially maximum gait speed, which could suggest that maximum gait speed may
be a more sensitive measure among midlife patients. These findings call for rethinking gait speed,
from a geriatric index of functional decline to an index of the role of lifelong neurocognitive
functioning in processes of aging. We next highlight 3 specific findings.

First, slow gait was associated with poor physical function at midlife. In this midlife cohort—
most of whom walked faster than older adults3—we documented associations between gait speed
and physical performance similar to those observed in older adults,26 indicating that the association
between gait speed and physical function is evident at age 45 years, not just among older people.

Second, at midlife, slow gait was associated with accelerated aging, as indexed by more rapid
deterioration of multiple organ systems over the preceding 2 decades and by facial age. Slow gait was
also associated with multiple indices of compromised structural brain integrity, including smaller total
brain volume, global cortical thinning, and reduced total surface area.27 Slow gait was associated with
the volume of white matter hyperintensities, which is associated with cognitive decline and
dementia,28 although this association diminished when we controlled for body composition or
childhood SES. These findings in 45-year-old participants parallel those of studies29,30 showing that
gait speed is associated with structural brain changes in older adults and that total brain volume and
white matter hyperintensities are associated with gait slowing in older adults.31,32 These findings
survived correction for multiple testing applied within the brain structure domain, but if correction
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for multiple testing had been applied across all study measures simultaneously, only total brain
volume would have remained associated with gait speed, suggesting that findings for cortical
thickness, surface area, and white matter hyperintensities, although consistent with the literature,
should be treated with caution.

Third, slow gait at midlife was associated with poorer neurocognitive functioning across
multiple cognitive domains; there was a mean difference of 16 IQ points (>1 SD) between the slowest
and fastest walkers (ie, bottom vs top quintile). These findings align with those of several studies4

of older adults showing associations of slow gait with cognitive impairment and risk of dementia.
Remarkably, in our study, gait speed was associated not only with concurrent neurocognitive
functioning in adulthood but also with neurocognitive functioning in early childhood. The effect sizes
between participants in the slowest and fastest gait speed quintiles were far from trivial: at age 3
years, the difference in brain health was 0.62 SD

Research is needed to unpack the association between childhood neurocognitive functioning
and midlife gait speed. Six hypotheses are proposed: first, the link between better brain health and
gait may be governed by the integrity of shared neural substrates that are involved in both
neurocognitive functions and walking throughout life.33,34 Second, better brain health may be
associated with health-promoting behaviors (eg, not smoking, healthy diet, and physical activity).
Third, better brain health may be associated with better health literacy, facilitating access to better
health care. Fourth, better brain health may be associated with higher education and lower risk of
unsafe working conditions and health-damaging exposures. Fifth, better brain health is an early
indicator of good overall physical status because the brain is a sensitive organ and possibly the first
to indicate weak overall somatic system integrity across multiple organ systems.35 Sixth, common
genetic factors may account for the link between better brain health and physical health, either
because of lower mutation load36 or pleiotropy at genetic loci associated with both better
neurocognitive function and a longer life span.37 The finding that midlife gait speed reflects lifelong
compromised neurocognitive functioning may help to account for the robust ability of gait
assessments to predict Alzheimer disease and related dementias.4,32

Because gait speed shows meaningful aging-related variation already in midlife, it may prove to
be a useful measure in aging trials aimed at preventing the onset of age-related disease. A variety of
interventions targeting human aging—ranging from calorie restriction to metformin
administration38,39—are being tested in aging-prevention trials. It is increasingly recognized that it
might be easier to prevent aging-associated damage than to reverse it, suggesting that the effect of
interventions to slow aging may work better if they are applied while people are still young and free
of disease and disability. This necessitates a shift toward enrolling younger participants in antiaging
trials, and with this shift, valid measures are required to identify risk groups that need intervention,
and to track the course of outcome before the manifestation of age-related diseases. Gait speed
could be used as one such measure: the gait speed test is cheap, safe, easy to test repeatedly, and
feasible to use among people in their 40s.

Limitations
A limitation of the study is the lack of gait speed measurement before age 45 years, which precludes
assessment of longitudinal changes in gait speed. Similarly, brain imaging data were not acquired
before age 45 years. Although we were unable to examine structural brain changes over time, we
were able to evaluate changes in neurocognitive functioning from childhood to adulthood and to
show that greater cognitive decline from childhood to midlife was associated with slower midlife
gait speed.

Conclusions

Gait speed is more than just a geriatric index of adult functional decline; rather, it is a summary index
of lifelong aging with possible origins in childhood CNS deficits. This helps to explain why gait can be
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such a powerful indicator of risk of disability and death in the elderly. It also encourages rethinking
gait as not only a motoric concern, but as an integrative measure of health.
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