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Abstract

IMPORTANCE People who complete more education live longer lives with better health. New
evidence suggests that these benefits operate through a slowed pace of biological aging. If so,
measurements of the pace of biological aging could offer intermediate end points for studies of how
interventions to promote education will affect healthy longevity.

OBJECTIVE To test the hypothesis that upward educational mobility is associated with a slower
pace of biological aging and increased longevity.

DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study analyzed data from 3
generations of participants in the Framingham Heart Study: (1) the original cohort, enrolled beginning
in 1948; (2) the Offspring cohort, enrolled beginning in 1971; and (3) the Gen3 cohort, enrolled
beginning in 2002. A 3-generation database was constructed to quantify intergenerational
educational mobility. Mobility data were linked with blood DNA-methylation data collected from the
Offspring cohort in 2005 to 2008 (n = 1652) and the Gen3 cohort in 2009 to 2011 (n = 1449).
Follow-up is ongoing. Data analysis was conducted from June 2022 to November 2023 using data
obtained from the National Institutes of Health database of Genotypes and Phenotypes (dbGaP).
EXPOSURE Educational mobility was measured by comparing participants’ educational outcomes
with those of their parents.

MAIN OUTCOMES AND MEASURES The pace of biological aging was measured from whole-blood
DNA-methylation data using the DunedinPACE epigenetic clock. For comparison purposes, the
analysis was repeated using 4 other epigenetic clocks. Survival follow-up was conducted

through 2019.

RESULTS This study analyzed data from 3101 participants from the Framingham Heart Study; 1652
were in the Offspring cohort (mean [SD] age, 65.57 [9.22] years; 764 [46.2%] male) and 1449 were in
the Gen3 cohort (mean [SD] age, 45.38 [7.83] years; 691[47.7%] male). Participants who were
upwardly mobile in educational terms tended to have slower pace of aging in later life (r = -0.18
[95% Cl, -0.23 to -0.13]; P < .001). This pattern of association was similar across generations and
held in within-family sibling comparisons. There were 402 Offspring cohort participants who died
over the follow-up period. Upward educational mobility was associated with lower mortality risk
(hazard ratio, 0.89 [95% Cl, 0.81to 0.98]; P = .01). Slower pace of aging accounted for
approximately half of this association.

CONCLUSIONS AND RELEVANCE This cohort study's findings support the hypothesis that
interventions to promote educational attainment may slow the pace of biological aging and promote
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Key Points

Question Is upward educational
mobility associated with a slower pace
of biological aging and increased
longevity?

Findings In this cohort study of 3101
participants representing 2 generations
of the Framingham Heart Study, upward
educational mobility was associated
with a slower pace of aging (as
measured with whole-blood
DNA-methylation data) and lower risk of
death. Slower pace of aging accounted
for approximately half of the association
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mortality.
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longevity. Epigenetic clocks have potential as near-term outcome measures of intervention effects
on healthy aging. Experimental evidence is needed to confirm findings.

JAMA Network Open. 2024,;7(3):€240655. doi:10.1001/jamanetworkopen.2024.0655

Introduction

People who complete more years of schooling tend to live longer, healthier lives. This educational
gradient is thought to arise through improvements in socioeconomic resources and resulting access
to health services, health-promoting social networks and communities, and healthy behaviors."
Educational gradients are apparent in nearly every organ system and aging-related disease, including
heart disease, diabetes, cancer, Alzheimer disease, and so on>""; people with higher levels of
education experience a lower prevalence of aging-related disease and later age of onset of disease.
This evidence of more rapid decline across organ systems suggests an overall acceleration of the pace
of biological aging.

Biological aging refers to a set of processes characterized by an accumulation of molecular
changes or hallmarks that progressively undermine the integrity and resilience capacity of our cells,
tissues, and organs as we grow older.'>'> We recently developed a novel method to quantify the pace
of biological aging in humans. Our approach used longitudinal phenotyping of multiorgan system
decline to derive a DNA-methylation (DNAm) blood test measurement of the pace of biological aging,
DunedinPACE (pace of aging calculated in the epigenome).™*

We recently found that the pace of aging, as measured by the DunedinPACE epigenetic clock,
was accelerated in individuals with low levels of education, and slowed in those with higher levels of
education.™"® In this study, we build on these observations to test the hypothesis that higher
educational attainment promotes longevity by slowing the pace of aging. Because genetic and social
inheritances affect how much education a person completes'” and may also affect their pace of
aging.'® we focused analysis on educational mobility (ie, differences in education of children relative
to their parents). We further conducted analysis of sibling differences to address potential
confounding by other factors shared within families.'® These designs help isolate associations of
education with the pace of aging from effects of correlated family-level factors.

We measured participants’ educational mobility by linking records across 3 generations of
Framingham Heart Study (FHS) participants. This procedure allowed us to compute educational
mobility for members of the 2 most recent generations (Offspring and Gen3 cohorts). For these
participants, we measured pace of aging from blood DNAm using the DunedinPACE epigenetic clock.
For the Offspring cohort, we also measured survival over 15 years of follow-up. Analysis proceeded
in 2 steps. We first tested associations of educational mobility with pace of aging and survival. We
then tested mediation of mobility-mortality associations through pace of aging. This analytic
framework allowed us to test the hypothesis that slower pace of aging mediates the association of
upward educational mobility with increased longevity.

Methods

Study protocols and results were reported following the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) reporting guidelines for cohort studies. Analysis of
Database of Genotypes and Phenotypes (dbGaP) data was approved by the Columbia University
Medical Center institutional review board. Informed consent was waived because deidentified FHS
data were accessed through the dbGaP.
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Data and Participants
The FHS is an ongoing observational cohort study first initiated in 1948, spanning 3 generations. The
original cohort was a two-thirds population sample of Framingham, Massachusetts, and aimed to
identify risk factors for cardiovascular disease. Additional cohorts have since been recruited,
consisting of the children and grandchildren of the original cohort and their spouses. DNAm data
were available from blood tests administered during Offspring cohort examination 8 (2005-2008)
and Gen3 cohort examination 2 (2009-2011).

We analyzed data from all generations of the FHS (n = 14 106 with available education data).
Our DNAm analysis sample consisted of participants with available education data who could be
linked to educational data from at least 1 parent and who provided a blood sample for DNAm analysis.
This sample included 1652 members of the Offspring cohort from 1025 families and 1449 members
of the Gen3 cohort from 552 families (Figure 1). Race and ethnicity were not assessed because more
than 99% of the patients in the FHS were White.

Educational Mobility

Educational Attainment

Participants reported their highest level of education to interviewers. For analysis, we converted
levels to years of schooling and standardized values within sex and 5-year birth cohort to account for
secular trends in educational attainment (details in the eMethods in Supplement 1).

Educational Mobility

Educational attainments were correlated between parents and their children (Pearson r = 0.35;

P < .001) (eFigure 1in Supplement 1). We computed mobility values using residualized-change
scores, which quantify mobility as the difference between a participant's educational attainment and
the attainment expected based on the educational levels of their parents, and difference scores,
which quantify mobility as the raw difference between parental and Offspring educational

t.16

attainment.'® Both metrics are denominated in sex-standardized and birth cohort-standardized units

of education which, on average, corresponded to approximately 2 years of schooling.

Biological Aging
Whole-genome DNAm profiles were obtained from dbGaP (phsO000724.v9.p13). Details are
reported in the eMethods in Supplement 1.

DunedinPACE

Biological aging is the progressive loss of integrity and resilience capacity in our cells, tissues, and
organs that occurs with advancing chronological age.2°" Pace of aging is a phenotype reflecting the
rate at which these biological changes occur.?? We quantified pace of aging from DNAm using the

Figure 1. Offspring and Gen3 Participant Flow Diagrams
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The figure shows how the final analytic samples were developed from the larger set of all participants in the Offspring (n = 1652) and Gen3 (n = 1449) Framingham Heart Study
cohorts (combined n = 3101). DNAm indicates DNA-methylation blood test.
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DunedinPACE epigenetic clock algorithm.™ This algorithm was developed from analysis of a 20-year
longitudinal change in 19 biomarkers of organ-system integrity in the Dunedin Study 1972-to0-1973
birth cohort at ages 26 years, 32 years, 38 years, and 45 years. A longitudinal pace-of-aging
phenotype derived from this analysis>® was then distilled into a single-time point DNAm blood test
using elastic-net regression.?* In diverse cohorts in the US and around the globe, this algorithm has
been associated with incident morbidity and disability, survival, and a range of socioenvironmental
exposures including educational attainment.'*>2532 We calculated participants’ clock values from
their DNAm data calculated using code available on GitHub.>*

Other Epigenetic Clocks

Other candidate measures of aging can be computed from DNAm data. For comparison purposes, we
repeated analysis using 4 alternative epigenetic clocks widely studied in the literature and included
in our prior articles: the Horvath, Hannum, PhenoAge, and GrimAge clocks.>*>” These clocks were
calculated using the online calculator hosted by the Horvath Lab.38 Clock values were residualized for
chronological age prior to analysis.

Survival

Details of FHS survival and mortality follow-up are reported elsewhere.3® Briefly, FHS conducts
continuous mortality follow-up for all study participants. Date and cause of death are recorded for
each participant based on hospital records, death certificates, and next-of-kin interviews. The
present study included mortality data accumulated through 2019 (mean follow-up from DNAm
baseline was approximately 12 years).

Statistical Analysis

We tested associations of educational mobility with pace of biological aging as measured by
DunedinPACE using linear regression models. We used generalized estimating equations to account
for nonindependence of observations of individuals within nuclear families.*® We conducted within-
family analysis comparing sibling differences in educational attainment with sibling differences in
pace of aging using fixed effects regression.*! We tested associations of educational mobility and
pace of aging with survival time using Cox proportional hazard regression models. Mediation analysis
was conducted using the CMAverse package*? in R version 4.0.3 (R Project for Statistical
Computing)*? following the approach described by Valeri and Vanderweele.** Clock values were
standardized to a mean (SD) of O (1) for analysis. For regression models, significance testing for
model coefficients was conducted using 2-sided t tests at the P < .05 level. For mediation analysis,
we used a regression-based estimation approach with bootstrap standard errors to obtain 95% Cls.
All models were adjusted for age and sex. Statistical analysis was performed from June 2022 to
November 2023.

Results

We analyzed data from 3101 participants from the Offspring cohort (n = 1652; mean [SD] age at
DNAm measurement, 65.57 [9.22] years; 764 [46.2%] male) and Gen3 cohort (n = 1449; mean [SD]
age at DNAm measurement, 45.38 [7.83] years; 691[47.7%] male) of the Framingham Heart Study
(FHS). Offspring cohort participants completed a mean (SD) of 14.74 (2.31) years of education, which
was approximately 2 years more than their highest-educated parent (mean [SD] years of education,
12.35 [2.45] years). Gen3 cohort participants completed a mean (SD) of 15.24 (1.88) years of
education, which was similar with their highest-educated parent (mean [SD] years of education,
14.98 [2.26] years). In the Offspring cohort, 402 (24.3%) died over the 15-year follow-up period.
Participant characteristics are reported in the Table. Participants with data on education and
educational mobility were similar with the overall DNAm sample.
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Educational Mobility and Pace of Biological Aging
Participants who were upwardly mobile had slower pace of aging than those who were downwardly
mobile (for residualized-change mobility, Offspring cohort Cohen d = -0.17 [95% Cl, -0.22 to -0.12];
P < .001; Gen3 cohort Cohen d = -0.21[95% Cl, -0.26 to -0.15]; P < .001; for difference-score
mobility, Offspring cohort Cohen d = -0.06 [95% Cl, -0.10 to -0.02]; P = .002; Gen3 cohort Cohen
=-0.07[95% ClI, -0.11to -0.02]; P = .006) (Figure 2; eTable 1, eFigure 3 in Supplement 1). As a
sensitivity analysis, we tested consistency of associations across participants who were born into
lower- and higher-educated families to evaluate whether returns to educational mobility were
concentrated at one end of the socioeconomic continuum. Effect sizes were similar across strata of
parental education (eFigure 2 in Supplement 1). In addition, effect sizes for educational mobility were
comparable across Offspring and Gen3 cohorts, suggesting consistent returns to relative educational
mobility over time (Figure 2; eFigure 3 in Supplement 1). In comparative analysis of other epigenetic
clocks, associations were weaker and not statistically different from O for the Horvath, Hannum, and
PhenoAge clocks. Results for the GrimAge epigenetic clock, which was developed within the FHS,
were similar to those for DunedinPACE. Full results are reported in eTable T1in Supplement 1.

Sibling Differences in Educational Attainment and Pace of Biological Aging
To the extent that there are social or environmental factors that affect both educational mobility and
aging trajectories, our results may overstate the association of mobility and healthy aging. To address

Table. Characteristics of DNA-Methylation, Education, and Mobility Samples®

Analytic sample Offspring sample Gen3 sample

Characteristic (n=3101) (n =1652) (n = 1449)
Families, No. 11577 1025 559/
Age, mean (SD), y 56.14 (13.25) 65.57(9.22) 45.38(7.83)
Sex, No. (%)
Female 1646 (53.1) 888 (53.8) 758 (52.3)
Male 1455 (46.9) 764 (46.2) 691 (47.7)
Died, No. (%) 419(13.5) 402 (24.3) NA
Education, mean (SD), y 14.97 (2.13) 14.74 (2.31) 15.24(1.88)
Parental education, mean (SD), y 131581(2570), 12235((2545), 14.98 (2.26)
Educational mobility (4), y 1.27 (2.66) 2.22(2.62) 0.18 (2.27)
Educational mobility (RC), y 0.24(1.98) 0.43(2.15) 0.02(1.73)
Educational mobility (4, -0.19(1.13) -0.03(1.17) -0.38 (1.06)
standardized)
Educational mobility (RC, 0.08 (0.91) 0.17 (0.90) -0.02(0.91)
standardized)
DunedinPACE 1.06 (0.12) 1.08(0.12) 1.03(0.11)

Figure 2. Association of Educational Mobility With Pace of Aging
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Abbreviations: NA, not applicable; RC,
residualized change.

@ The table provides information on the composition
of our analytic sample (n = 3101, Offspring n = 1652,
Gen3 n = 1449). The analytic sample includes all
individuals who provided DNA-methylation data,
who reported their own educational attainment
levels, and for whom educational attainment data
was available for at least 1 parent.

The figure shows effect estimates for associations of
educational mobility with pace of aging as measured
with the DunedinPACE epigenetic clock. The bars on
the left show differences in pace of aging z score per
1-SD unit of upward educational mobility (Offspring
effect size [ES], -0.17; P < .001; Gen3 ES, -0.21;

P <.001). The bars on the right show differences in
pace of aging z score per 1-SD difference in educational
attainment between siblings, as estimated using family
fixed-effects regression (Offspring ES, -0.21; P < .001;
Gen3 ES, -0.25; P < .001). All models included
covariate adjustment for participant age and sex.
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this potential confounder, we repeated our analysis within families. For participants with a sibling in
the data (n = 2437; Offspring cohort n = 1096; Gen3 cohort n = 1341), we tested whether the
difference in educational mobility between siblings was associated with differences in the pace of
biological aging. This design blocks confounding by all factors shared by siblings in a family. Results
were similar to our primary analysis. The sibling with higher educational mobility tended to have
slower pace of aging as measured by the DunedinPACE epigenetic clock as compared with their less-
educated sibling (Offspring cohort Cohend = -0.21[95% Cl, -0.28 to -0.13]; P < .001; Gen3 cohort
Cohen d =-0.25[95% Cl, -0.32 to -0.19]; P < .001) (eTable 2 in Supplement 2). Again, results were
not statistically different from O for the Horvath, Hannum, and PhenoAge epigenetic clocks. Results
for the GrimAge epigenetic clock, which was developed within the FHS, were similar to those for the
DunedinPACE epigenetic clock (eTable 2 in Supplement 2).

Educational Mobility, Pace of Aging, and Longevity

We next focused our attention on educational gradients in mortality in the Offspring cohort

(n =1652; Gen3 participants were not included in this analysis because very few deaths occurred in
this younger cohort during the follow-up period). Participants who were more upwardly
educationally mobile had lower mortality risk (for residualized-change mobility: hazard ratio [HR],
0.87[95% Cl, 0.79 to 0.96]; P = .047: for difference-score mobility: HR, 0.92 [95% Cl, 0.83 to 1.02];
P = 10). In parallel, as previously reported,'* participants with faster pace of aging were at higher risk
of death than those with a slower pace of aging (mortality HR, 1.61[95% Cl, 1.49 to 1.74]; P < .001).
AllDNAm clocks, with the exception of the Horvath clock, were associated with mortality; effect sizes
were attenuated relative to DunedinPACE with the exception of the GrimAge clock, which was
developed to estimate mortality in the FHS sample. Full results are reported in eTable 3 in
Supplement 1.

Mediation Analysis of Educational Gradients in Mortality by Pace of Aging

Finally, we tested whether differences in pace of aging mediated educational gradients in mortality
risk. We found that DunedinPACE mediated 50% of the association between educational mobility
and mortality risk (indirect effect HR, 0.93 [95% Cl, 0.90 to 0.95]). Results were robust to methods
that allow relaxation of assumptions about exposure-mediator and mediator-outcome confounding
and exposure-mediator interactions.** Full results are reported in eTable 4 in Supplement 2.

Sensitivity Analyses

Pace of aging was measured from blood DNAm data. Blood DNAm is affected by smoking history and
DNA-sample white-blood-cell composition.*>#® In turn, these factors may relate to mortality risk.
Therefore, we repeated analysis including covariate adjustment for these factors. Smoking history
was recorded from participant reports; white blood cell composition in the DNA sample was
estimated using the algorithms proposed by Houseman and colleagues.*” Covariate adjustment for
estimated cell counts and participant reports of smoking history resulted in modest attenuation of
some effect sizes; however, all analyses showed substantial mediation of educational gradients in
mortality risk by pace of aging, measured using DunedinPACE (eTable 4 in Supplement 2). Full results
arereported in eTables 5, 6, 7, and 8 in Supplement 1. Finally, we repeated our core analysis using
unstandardized versions of the education and mobility variables. Results were similar to those
reported in the main text (eTable 9 in Supplement 1).

Discussion

People with higher levels of education tend to live longer, healthier lives as compared with those with
less education.*®->° We analyzed data from 3 generations of the FHS to test whether this educational
gradient in healthspan and lifespan could reflect effects of education on the pace of biological aging.

Participants who were upwardly mobile in educational terms had slower pace of aging, as measured
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by the DunedinPACE epigenetic clock and were less likely to die over the follow-up period.
Differences in pace of aging accounted for roughly half of the association between educational
mobility and mortality risk.

DunedinPACE was developed as a surrogate end point for interventions targeting healthy
lifespan.>">3 Prior studies have reported associations between education and DunedinPACE, and
between DunedinPACE and aging-related disease and mortality."*'>2>27 Qur study, to our
knowledge, is the first to follow individuals across the educational-origins to educational-attainment
to pace-of-aging to mortality pathway. The magnitude of associations between education and pace
of biological aging we report in this sample (r of 0.19 to 0.24) are consistent with population-
representative studies in the US, UK, and New Zealand (r of 0.17 to 0.38") and correspond to a 2%
to 3% slower pace of aging per unit of upward educational mobility (equivalent to approximately 2
years of additional schooling). In turn, our mediation analysis found that this magnitude of slowingin
pace of aging corresponded to an approximately 7% reduction in the hazard of mortality, half of the
overall effect of educational mobility. Collectively, these findings contribute evidence that
DunedinPACE is a candidate surrogate end point for the association of educational interventions
with aging.

A further contribution of our study is evidence that healthy-aging returns to education persist
into more recent birth cohorts, among whom higher levels of education are more common.
Educational gradients in mortality have grown steeper in recent years.”* However, these trends
reflect outcomes primarily for the cohorts born across the early-to-middle 20th century. Across
these cohorts, the proportion of individuals completing high school and college education increased
dramatically.>> Whether the trend of widening educational inequality in healthy aging will persist for
later-20th century birth cohorts, for whom rates of high school and college graduation have been
more stable, is unknown. We found that effect sizes for associations between upward educational
mobility and slower pace of aging were similar for the Offspring and Gen3 cohorts, suggesting that
even in the context of relatively high educational attainment, upward mobility continues to yield
returns for healthy aging.

Limitations
We acknowledge that this study has limitations. There is no criterion standard measure of biological
aging.?' We focused on the pace of aging measure DunedinPACE based on 3 lines of evidence. First,
the DunedinPACE algorithm is predictive of diverse aging-related outcomes, including disease,
disability, and mortality."*2>-272% Second, the algorithm is associated with social determinants of
healthy aging in young, midlife, and older adults.'#1>-28:30-3156 Thijrd, the algorithm shows evidence
of being modified by calorie restriction,”” an intervention that modifies the basic biology of aging in
animal experiments.”® Confidence in results is further supported by the consistency of our findings
with those for alternative measurements of biological aging in independent cohorts.>® Additionally,
our results are robust to known confounds of DNAm-based measurements of aging, specifically cell
composition of blood samples used to derive DNA and smoking history.*¢-¢°

There are many factors that may drive both educational attainment and slower biological aging,
such as childhood poverty.'828:>6:6162 Confounding by such factors would lead simple associations
to overstate the potential of education interventions to modify biological aging. We addressed this
threat of confounding using 2 designs that control for differences between participants in their family
history and early-life environment. First, we analyzed educational mobility between generations of
a family. Second, we analyzed differences between siblings within a family. Across these
specifications, we found consistent evidence of slower pace of aging in people who were upwardly
educationally mobile and who completed more schooling as compared with their siblings. Ultimately,
evidence from randomized trials®® is needed to confirm whether promoting educational attainment
slows the pace of aging. Furthermore, the path from educational mobility to healthy longevity
involves posteducation attainments. Studies of mediating mechanisms, including income and wealth
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accumulation, occupational characteristics, health literacy, and health care access, can help refine
understanding of how upward educational mobility slows the pace of aging.6+%°

The FHS is predominantly White-identifying and includes relatively few participants who did not
graduate from high school. In data sets representative of the United States population, the difference
in mortality risk associated with having attended some college as compared with not is HR of 0.66
t0 0.76.°° In the data we analyzed, the corresponding effect size is smaller (HR, 0.81).
Underrepresentation of individuals with low educational attainment could attenuate FHS education-
mortality associations. This bias should make our estimates of mediation by DunedinPACE
conservative. Nevertheless, replication in more diverse cohorts is a priority. The FHS Offspring cohort
DNAm measurement occurred at the 8th examination, after approximately 4 decades of follow-up.
Survival bias could affect results. However, we observed similar effect sizes for associations of
educational mobility with pace of aging in the younger Gen3 cohort, for whom DNAm data were
generated from samples collected at their 2nd examination.

Conclusions

The healthier aging of individuals with more education and other social advantages is well
established. In this prospective cohort study of educational mobility in 2 generations of the FHS, we
found that an accelerated pace of biological aging is associated with this inequality. In addition,
findings suggest that new methods to quantify the pace of aging can provide near-term measures of
health effects for programs and policies designed to promote educational attainment and other
socioeconomic assets. Because the pace of aging is variable from young adulthood, measurements
such as DunedinPACE can potentially illuminate intervention effects years or decades before aging-
related functional deficits and chronic diseases become apparent. Such information can, in turn, help
refine efforts to heal health disparities and build aging health equity.
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