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Abstract

Objectives

Individuals with more education are at lower risk of developing multiple, different age-

related diseases than their less educated peers.  A reason for this might be that individuals with 

more education age slower. There are two complications in testing this hypothesis. First, there 

exists no definitive measure of biological aging. Second, shared genetic factors contribute 

towards both lower educational attainment and the development of age-related diseases. Here, 

we tested whether the protective effect of educational attainment was associated with the pace of 

aging after accounting for genetic factors.

Methods

We examined data from five studies together totaling almost 17,000 individuals with 

European ancestry born in different countries during different historical periods, ranging in age 

from 16 to 98 years old. To assess the pace of aging, we used DunedinPACE, a DNA 

methylation algorithm that reflects an individual’s rate of aging and predicts age-related decline 

and Alzheimer’s Disease and Related Disorders (ADRD).  To assess genetic factors related to 

education we created a polygenic score (PGS) based on results of a genome-wide association 

study (GWAS) of educational attainment. 

Results

Across the five studies, and across the lifespan, higher educational attainment was 

associated with a slower pace of aging even after accounting for genetic factors (meta-analysis 

effect size=-0.20, 95%CI[-0.30- -0.10]; p-value = 0.006). Further, this effect persisted after 
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taking into account tobacco smoking (meta-analysis effect size=-0.13, 95%CI[-0.21- -0.05]; p-

value = 0.01). 

Discussion

These results indicate that higher levels of education have positive effects on the pace of 

aging, and that the benefits can be realized irrespective of individuals’ genetics.

Keywords: pace of aging, education, epigenetic clocks
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Main article 

Introduction

Individuals with more formal education are at lower risk than their less educated peers of 

developing multiple age-related diseases, including Type 2 Diabetes, hypertension, 

cardiovascular disease (Agardh et al., 2011; Degano et al., 2017; Dupre, 2007; Kubota et al., 

2017) and Alzheimer’s and related dementias (Sharp & Gatz, 2011; Xu et al., 2015). One reason 

for this may be that individuals with more formal education age slower. The geroscience 

hypothesis proposes that biological aging, conceptualized as the gradual and progressive 

deterioration of biological system integrity (Kirkwood, 2005), increases vulnerability to multiple 

age-related diseases (Kennedy et al., 2014). Thus, while all individuals age chronologically at the 

same rate, some individuals age much faster biologically. Since lower educational attainment is 

such a powerful predictor of multiple, different age-related diseases and early mortality, it is 

possible that education exerts its influence on age-related diseases not via disease-specific social 

and biological mechanisms but by accelerating whole-body biological aging. Accelerated 

biological aging would help to explain the wide-ranging health effects of education (Hahn & 

Truman, 2015; Zajacova & Lawrence, 2018)

A difficulty in evaluating the hypothesis that educational attainment is negatively 

associated with accelerated aging is that, at present, there is no widely accepted measure of 

biological aging (Cohen et al., 2020; Crimmins et al., 2021).  But progress on this front is rapid, 

including efforts to measure individual differences in the pace of aging using -omics data 

(Rutledge et al., 2022), especially genome-wide methylation data. DNA methylation is an 

epigenetic mechanism by which specific points of the genome (cytosines) are chemically 
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modified (methylated) and thereby influence gene regulation. Many efforts to develop measures 

of aging have focused on DNA methylation quantified in blood, in part because it is a biological 

substrate that is sensitive to age-related changes (Horvath & Raj, 2018; Levine, 2020). Using 

machine learning, these efforts involve developing algorithms to capture information about aging 

by combining measurements of DNA methylation at multiple sites across the genome. Such 

algorithms can be summarized in terms of developmental ‘generations’. The first generation of 

methylation algorithms was trained on chronological age in samples ranging in age from children 

to older adults. These algorithms identify patterns of methylation that vary by chronological age; 

however, if an individual’s score on such clocks is older than their actual age, it is inferred that 

they are biologically older. The first-generation algorithms include the “Hannum clock” 

(Hannum et al., 2013) and the “Horvath clock” (Horvath, 2013). The second generation of 

methylation algorithms included measures of people’s current physiological status in order to 

identify methylation patterns that account for variation in current health status and that predict 

mortality.  These second-generation algorithms include PhenoAge (Levine et al., 2018) and 

GrimAge (Lu et al., 2019). In contrast to these earlier algorithms that relied on cross-sectional 

measures of current health to estimate relative biological age third-generation algorithm has been 

recently developed, DunedinPACE (Pace of Aging Calculated from the Epigenome), which is 

unique in predicting an individual’s rate of aging. Unlike the prior clocks, DunedinPACE was 

based on geroscience theory, which specifies the definition of aging as “the gradual, progressive, 

synchronized deterioration of function in multiple organ systems of the body over years of time.” 

No other measure of aging operationalizes this theory. The DunedinPACE algorithm was 

developed by first measuring people’s rate of physiological change over time and then 

identifying the methylation patterns that optimally captured individual differences in their age-
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related decline (Belsky et al., 2022). Specifically,  age-related change in 19 cardiovascular, 

metabolic, renal, immune, dental, and pulmonary biomarkers among individuals of the same 

chronological age over a 20-year observation period in the Dunedin Longitudinal Study (Elliott 

et al., 2021) were measured.  Methylation patterns at the end of the observation period were then 

identified that estimated how fast aging occurred during the years leading up to the point of 

measurement (Belsky et al., 2022).  Thus, DunedinPACE distills multiple decades of 

longitudinal change in biomarker data to a single point-in-time measure and was designed to 

capture methylation patterns reflecting individual differences in age-related decline. This new 

measurement tool can now be exported to diverse studies with DNA methylation data in order to 

test the hypothesis that lower educational attainment is associated with accelerated aging.  

A challenge in testing this hypothesis is that lower educational attainment and greater 

susceptibility to age-related diseases share genetic risk factors (Boardman et al., 2015; Marioni et 

al., 2016; Wedow et al., 2018). Large-scale genome-wide association studies (GWAS) have 

uncovered many genetic variants (Single Nucleotide Polymorphisms; SNPs) that are associated 

with educational attainment (Lee et al., 2018). These SNPs can be condensed into a single metric 

of genetic likelihood of education, a ‘polygenic score’ (PGS). This PGS not only predicts how 

much education individuals attain, but is also statistically associated with many health outcomes 

such as metabolic dysregulation, coronary heart disease , and frailty (Ding et al., 2019; 

Huibregtse et al., 2021).  Shared genetic etiology between educational attainment and age-related 

diseases raises the possibility that educational attainment is associated with accelerated aging not 

because formal education protects individuals from more rapid age-related decline, but because 

individuals who attain more education are genetically predisposed to better health more 

generally. The scientific, policy, and ethical implications of these alternative pathways are not 
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inconsequential. They raise questions about whether improving access to formal education may 

slow the process of aging and protect people from disease (Zimmerman & Woolf, 2014) and they 

flag concerns about genetic essentialism and the geneticization of social and health inequalities 

(Shostak et al., 2009). These discussion points beg the important question: can education be a 

lever for reducing unhealthy population aging?

Here we leveraged data from five studies in developed nations to ask whether the 

protective effects of formal education against accelerated aging accrue despite differences 

between people in their education-related genetics. We tested this in three steps. First, in each 

study, we evaluated an individual’s pace of aging by applying the DunedinPACE algorithm to 

their genome-wide DNA methylation data. We then tested if higher educational attainment was 

associated with slower pace of aging. Second, we used genome-wide SNP data to quantify each 

individual’s education-related genetics (as captured by a PGS). We then tested whether 

associations between higher educational attainment and slower pace of aging persisted 

irrespective of genetic differences between people and if higher educational attainment 

benefitted all individuals equally. Third, we tested whether the association between educational 

attainment and pace of aging was explained by tobacco smoking.  Tobacco smoking is much 

more common among individuals who have not obtained high levels of education (Centers for 

Disease & Prevention, 2010), and exposure to tobacco smoking harms virtually every organ in 

the body. Tobacco smoking could thus be a potent mechanism by which low educational 

attainment accelerates whole-body aging. Beyond the negative biological impact of tobacco-

related toxins, tobacco smoking captures many personological and psychosocial factors that 

antedate the completion of formal education and that put people at risk for faster aging. For 

example, adolescents who become lifelong tobacco smokers are characterized by high levels of 
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negative emotionality (e.g., stress reactivity, aggression, and feelings of alienation) and low 

levels of behavioral constraint (e.g., greater risk-taking, impulsivity (Slutske et al., 2005), which 

portend later poor health and early mortality (Chiang et al., 2018; Jokela et al., 2013). Thus, 

controlling for tobacco smoking captures unmeasured confounding beyond the health effects of 

tobacco smoking. 

The five studies included in this article represent almost 17,000 individuals born and 

raised in different countries and in different historical periods. By including people from 

different places and time, we test whether the protective effect of education generalizes across 

geographical and historical variation in educational and health-care practices and policies. 
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Methods

Data sources

We utilized data from five cohorts. These were (A) the Dunedin study (New Zealand, N = 

804, 50.6% male, age = 45 years), (B) the Health and Retirement Study (U.S., N = 2,311, 43.2% 

male, mean(SD) age = 71.6(9.6)), (C) the Understanding Society study (UK, N = 3,620, 44.4% 

male, mean(SD) age = 53.0(15.5)), (D) the Generation Scotland study (Scotland, N = 8,613, 

40.9% male, mean(SD) age = 49.7(13.7), and (E) the E-Risk study (England and Wales, N = 

1,507, 50.6% male, age = 18 years). Detailed descriptions and demographics of each study can 

be found in Supplemental Figure 1 and Supplemental Methods.

Calculation of DNA methylation aging measures

For all studies, DunedinPACE was calculated using the R package ‘DunedinPACE’ as 

described in (Belsky et al., 2022) and publicly available on GitHub 

(https://github.com/danbelsky/DunedinPACE). Within each study, DunedinPACE values were 

standardized to mean = 0, SD =1. All other DNA methylation measures were calculated using 

the online calculator found at https://dnamage.genetics.ucla.edu/new. Where appropriate, 

estimates of age advancement were derived from these values by residualizing for chronological 

age at the time of assessment.

Education measurements

In each cohort, educational attainment was measured as the highest level of education on 

a 4-point scale, ranging from no school qualification to a university degree or higher. To aid 
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cross-study comparisons, cohort-specific measures of educational attainment qualifications were 

binned into classes reflecting increasingly higher educational achievement, as follows:

Dunedin Study: 0=’No school qualification’; 1=’School certificate’; 2=’High school graduate’; 

3=’University degree or higher’; HRS: 0=’Less than high-school’, 1=’General Educational 

Development (GED) certificate’, 2=’High-school graduate or some college’, 3=’College and 

above’; Understanding Society Study, 0=‘No Qualification’, 1= ‘GCSE etc.’/‘Other 

Qualification’, 2="A-level etc.’, 3=‘Degree’ /‘Other higher degree’; Generation Scotland Study: 

0=‘No Qualification’, 1=‘Standard Grade/O Level/GCSE’/’CSEs or equivalent’/’School leavers 

certificate’/’Other’, 2=‘NVQ/HND/HNC or equivalent"/’Higher Grade’, 3=‘University degree or 

higher’/’College/University degree’/’Other professional or technical qualification’; and E-Risk: 

0=‘No qualification’, 1=‘GCSE grade D-G’, 2=‘GCSE grade A*-C’, 3=‘A level’. Across all 

cohorts, the four levels of educational achievement show a dose-response relationship with aging 

as measured by DunedinPACE (Figure 1); education was therefore analyzed as a continuous 

variable.

Polygenic score measurements

Polygenic scoring was conducted following the method described by Dudbridge 

(Dudbridge, 2013) using PRSice (Euesden et al., 2015). For each study, we used summary 

statistics from a GWAS of educational attainment (Lee et al., 2018) to compute PGS for 

educational attainment. We used all matched SNPs to compute PGS irrespective of nominal 

significance for their association with educational achievement. SNPs were not clumped or 

pruned for LD prior to analysis. To control for possible residual population stratification, scores 
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were residualized for the first 10 principal components estimated from the genome-wide SNP 

data. Within each study, we standardized residuals (mean = 0, SD = 1) for analysis. 

Tobacco smoking

Exposure to tobacco smoking was estimated from DNA methylation data following 

published guidelines (Sugden et al., 2019). Briefly, within each study DNA methylation values 

for 2,623 DNA methylation probes associated with tobacco smoking were weighted by the 

coefficient of association with smoking and summed to produce a smoking PolyEpiGenetic 

Score (smPEGS). This score was standardized to mean = 0, SD =1. In addition, we also 

employed data on self-reported tobacco smoking (Generation Scotland: pack years smoked up to 

time of assessment (standardized to mean = 0, SD = 1);  all other studies: current smoking at 

time of assessment; yes/no).

Data analysis and statistical methods

All data analyses were performed in the R statistical environment apart from the genetic 

sensitivity analysis (described later) which was conducted in MPLUS. For association analyses, 

we used linear regression models in the Dunedin, HRS and Understanding Society studies; for 

Generation Scotland and E-Risk, we used panel linear models with Huber-White robust standard 

errors (using R packages ‘plm’ and ‘lsmeans’) to account for familial clustering. Models included 

covariates for sex, age (except for the Dunedin and E-risk studies where participants are the same 

age), and technical covariates consisting: in the Dunedin, HRS, and E-Risk studies of the first 32, 

6, and 28 PCs from principal component analysis of methylation control probes, explaining 90% 
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of variation; in Understanding Society and Generation Scotland of DNA methylation processing 

rack. 

To perform t- and Z-ratio tests, we used the R packages ‘lsmeans’ and ‘geepack’ (for the 

Generation Scotland and E-Risk studies). To perform meta-analysis and plot results, we used the 

R packages ‘metagen’ (using the restricted maximum likelihood estimator, REML, the Knapp-

Hartung adjustment, and the random-effects model) and ‘forest’. We used the R package 

‘Evalues’ to calculate E-values. To address potential population stratification, data from all five 

cohorts were restricted to participants with white ancestry. All analyses were performed in 

parallel by a second, independent researcher to confirm reproducibility.

Data availability

For the Dunedin and E-Risk studies, data may be accessed through agreement with the 

Study investigators (https://moffittcaspi.trinity.duke.edu/research-topics/dunedin; 

https://moffittcaspi.trinity.duke.edu/research-topics/erisk). For HRS, data may be accessed via 

the Health and Retirement Study (https://hrs.isr.umich.edu/data-products) with restricted health 

data available from NIAGADS. For Understanding Society, data may be accessed upon approval 

by the study coordinators (https://www.understandingsociety.ac.uk/documentation/health-

assessment/accessing-data/genetics-application). For Generation Scotland, data may be accessed 

upon approval by the study coordinators (https://www.ed.ac.uk/generation-scotland/for-

researchers/access). 
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Results

Educational attainment is associated with the Pace of Aging

We first tested the association between educational attainment and the pace of aging in 

the Dunedin Study. Participants in the Dunedin Study were all born during the same year (1972-

73) in the same city (Dunedin, New Zealand). As such, they had opportunities to interact with 

the same educational and health systems with minimal influence of temporal or geographical 

effects. Dunedin participants who attained more education aged at a significantly slower rate 

than participants who attained less education (b [95% CI] = -0.38 [-0.44- -0.31], Table 1, Figure 

1). Individuals with the highest level of education aged 1.8 months/year more slowly than 

individuals with no education (Supplemental Table 1, Panel D).

Next, we turned to the Health and Retirement Study (HRS), a population-

representative cohort of 50+ year-olds from the United States limited to those of European 

ancestry for this analysis. This cohort represents individuals entering later life in a region with 

different educational and health systems than that of the midlife Dunedin Study members. HRS 

participants who attained more education aged at a significantly slower rate than participants 

who attained less education (b [95% CI] = -0.20 [-0.24- -0.16] ], Table 1, Figure 1). Individuals 

with the highest level of education aged 1.32 months/year more slowly than individuals with no 

education (Supplemental Table 1, Panel D).

We next asked whether we could replicate this association across the lifespan. To do this, 

we turned to two independent studies.  The Understanding Society study includes individuals 

ranging in age from 16-98 (mean age = 53.0 years; SD = 15.5 years). The Generation Scotland 

study includes individuals ranging in age from 18-93 (mean age = 49.7 years; SD = 13.7 years). 

Individuals in each study were exposed to different educational and health opportunities related 
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to the era in which they were born (between 1915 and 1990 for Understanding Society between 

1914 and 1995 for Generation Scotland). Moreover, both Understanding Society (sampling 

England, Wales, Northern Ireland, and Scotland) and Generation Scotland (sampling Scotland) 

are based in the United Kingdom, and as such reflect educational and health practices that are not 

necessarily shared with New Zealand or the USA. Despite these differences, results across both 

studies were very similar and resembled those observed in Dunedin and HRS. Study participants 

who attained more education aged at a significantly slower rate than participants who attained 

less education (Understanding Society: b [95% CI] = -0.20 [-0.23- -0.17]; Generation Scotland: 

b [95% CI] = -0.20 [-0.22- -0.18]; Table 1, Figure 1). Individuals with the highest level of 

education aged 1.44 and 1.08 months/year more slowly than individuals with no education in the 

Understanding Society and Generation Scotland Studies, respectively (Supplemental Table 1, 

Panel D).

Due to nationwide social policy changes, access to education and health care can vary for 

different generations of individuals born in the same country . These generational differences 

might alter the patterns of association between educational attainment and aging. To test this 

possibility, we subset the Understanding Society and Generation Scotland data into five groups 

each to capture individuals who were born within the same 15-16-year age bands. Analysis of the 

association between pace of aging and educational attainment within each of these age groups 

showed that, in both studies, individuals with the highest level of education had the slowest pace 

of aging regardless of how old they were or when they were born. An exception to this was 

among the very oldest group of individuals in each of the two studies (Figure 3); this may reflect 

selective participation and selective mortality, combined with a small sub-sample size. In 
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general, the positive effects of education on pace of aging are experienced across the lifespan and 

are not restricted to individuals who were born and raised during specific time periods.

Lastly, we tested the link between educational attainment and the pace of aging in a 

contemporary cohort of young individuals who were currently in the process of realizing their 

educational potential. We turned to the E-Risk study, which includes individuals born in the 

United Kingdom in 1994-95. Study members were assessed at age 18, at which point we 

measured how far they had advanced in the UK educational system. This cohort offered the 

opportunity to test whether educational attainment was associated with early whole-body aging, 

years before the typical hallmarks of aging are manifest. E-Risk participants who attained more 

education aged at a significantly slower rate than participants who attained less education (b 

[95% CI] = -0.17 [-0.21- -0.12]; Table 1, Figure 1). Individuals with the highest level of 

education aged 0.48 months/year more slowly than individuals with no education (Supplemental 

Table 1, Panel D).

Genetics of educational attainment are associated with the Pace of Aging

In each of the five cohorts, we calculated each individual’s PGS for educational 

attainment.  In each cohort, individuals with higher polygenic scores attained significantly more 

education (Figure 2). The education PGS accounted for 9-13% of the variance in educational 

attainment across the cohorts, a finding that is consistent with published estimates (Lee et al., 

2018). Mean differences in PGSs between individuals with the lowest vs. highest level of 

education in each study were substantial, ranging from 0.69 SD units in Understanding Society 

to 0.97 SD units in the Health and Retirement Study (Supplemental Table 1). 
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Consistent with evidence that educational attainment and aging-related health are 

influenced by similar genetic factors, we found individuals with a higher educational attainment 

PGS also aged at a significantly slower pace in all five cohorts (Figure 2). Mean differences in 

PGS between individuals who were aging slowest vs. fastest (bottom and top quartiles of the 

DunedinPACE distribution) in each study were substantial, ranging from 0.26 SD units among 

the young participants in the E-Risk study to 0.50 SD units among middle-aged Dunedin Study 

participants.  

Do the beneficial effects of education on slower aging persist after taking education-related 

genetic differences into account?

To answer this, we repeated tests of association between educational attainment and pace 

of aging, controlling for education PGS. Across all five cohorts, individuals who attained more 

education aged at a significantly slower rate than participants who attained less education even 

after controlling for an individual’s PGS (Table 1). This effect was observed in middle-aged 

New Zealanders (Dunedin Study, b [95% CI] = -0.36 [-0.43- -0.29]), older-aged Americans 

(HRS, b [95% CI] = -0.18 [-0.22- -0.13]), British and Scottish individuals of varied age 

(Understanding Society and Generation Scotland, b [95% CI] = -0.16 [-0.20- -0.13] and b [95% 

CI] = -0.17 [-0.19- -0.15], respectively) and British teenagers (E-Risk, b [95% CI] = -0.16 

[-0.21- -0.11]). 

Next, we tested whether the benefits of more education accrue equally to individuals at 

different levels of the PGS distribution, from low to high. In each of our 5 cohorts, we subset 

individuals into quintiles according to their PGSs (from lowest 20% to highest 20%). Analysis of 

the association between educational attainment and pace of aging showed that, in all studies, 
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individuals with higher levels of education had the slowest pace of aging regardless of their 

location on the education polygenic-score distribution (Supplemental Figure 2). Further, the 

magnitude of association between educational attainment and pace of aging within each PGS 

quintile was not significantly different from that of any other quintile within each cohort. The 

association between higher educational attainment and slower pace of aging does not differ 

across the distribution of education-related genetic differences. 

In summary, higher educational attainment was associated with slower pace of aging 

irrespective of genetic differences related to education, and this effect was seen across 

individuals from different geographical regions, born during different eras, and, in the case of the 

E-Risk Study, still accumulating their educational achievements. Higher education has the 

potential to benefit all individuals irrespective of genetic differences between them that predict 

how much education they are likely to attain.  

Meta-analysis of the association between educational attainment and the Pace of Aging

We performed a meta-analysis of the results in the five cohorts (N=16,855) to establish 

the overall effect size of the association between educational attainment and the pace of aging 

after controlling for each individual’s PGS for educational attainment. The overall effect size 

was significantly different from zero (effect size =-0.20, 95%CI [-0.30- -0.10]).  We noted 

significant heterogeneity in the estimates across the 5 cohorts (I2 = 87%, heterogeneity χ2 = 

29.64, Figure 4A). Heterogeneity statistics may be biased upward with only 5 studies (von 

Hippel, 2015).  Nevertheless, we re-performed the meta-analysis after removing the largest 

estimate, from the Dunedin Study; heterogeneity was no longer significant (I2 = 0%, 
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heterogeneity χ2 = 0.35, p = 0.95), and the overall effect size was little changed (effect size =-

0.17, 95%CI [-0.18- -0.16]).  

Robustness to sources of confounding and bias

Is the association between educational attainment and Pace of aging explained by tobacco 

smoking?  To test whether tobacco smoking accounts for the link between low educational 

attainment and accelerated aging, we repeated all preceding analyses controlling for each 

individual’s exposure to tobacco smoking. To ensure that consistent measures of smoking were 

used across the various studies, we utilized a Smoking PolyEpiGenetic Score (smPEGS) that 

indexes tobacco exposure via variation across smoking-associated DNA methylation sites 

(Sugden et al., 2019). Importantly, smPEGS indexes cumulative lifetime exposure to tobacco 

smoking, not only current smoking. After controlling for smoking, educational attainment 

remained significantly associated with the pace of aging in all five cohorts (Table 1). Meta-

analysis estimated that tobacco smoking attenuated the association between educational 

attainment and pace of aging by one-third, but the association remained significantly different 

from zero (effect size =-0.13, 95%CI [-0.21- -0.05], I2 = 81%, heterogeneity χ2 = 20.83, Figure 

4B), even after we removed the largest Dunedin Study estimate from the meta-analysis (effect 

size =-0.09, 95%CI [-0.11- -0.08], I2 = 0%, heterogeneity χ2 = 1.45).  Furthermore, these patterns 

remained consistent if instead we controlled for self-reported tobacco smoking (Supplemental 

Table 2) rather than smPEGS. Tobacco smoking does not fully explain the association between 

higher educational attainment and slower pace of aging.

Selection bias. Selection into research studies as well as dropout from studies may exert a 

biasing effect on both genetic and phenotypic associations. It is increasingly appreciated that 
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these problems characterize many large publicly available studies (Tyrrell et al., 2021). In 

contrast, both the Dunedin and E-Risk studies represent the populations from which they were 

drawn and have high retention rates with no evidence of selective attrition in relation to genetic 

and exposure variables (see Supplemental Figure 3). Since we observed similar patterns of 

association in these two studies versus in the three other studies we included where endogenous 

selection bias (Akimova et al., 2021) and healthy volunteer bias (Brayne & Moffitt, 2022) are 

thought to exist (for example, see Lynn & Borkowska, 2018; Michaud et al., 2011; Smith et al., 

2013), it is unlikely that selection bias accounts for the associations reported here.    

Genetic sensitivity analysis. We used PGS for educational attainment to test if genetic 

differences between individuals could explain the association between an individual’s 

educational attainment and their pace of aging. However, PGS explain only a portion of the 

heritability of educational attainment and as such controlling for the PGS alone may not capture 

all genetic confounding (Pingault et al., 2022). For context, in the present study the education 

PGS explains 9-13% of the variation in educational attainment, whereas the SNP heritability of 

educational attainment has been estimated between ~15-21% (Davies et al., 2016; Pingault et al., 

2021). Unmeasured genetic confounding could be present.

To test if additional genetic confounding might explain the association between educational 

attainment and pace of aging, we performed genetic sensitivity analyses across all five studies 

using GsensX (Pingault et al., 2021), a method to adjust associations for the presence of 

unidentified genetic factors influencing both risk factor and outcome. First, using a previously-

reported SNP heritability estimate of 14.7% (Pingault et al., 2022), we calculated total effect 

size, effect size of genetic confounding, and adjusted effect size of the association between 

educational attainment and DunedinPACE (controlling for education PGS) across the five 
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studies. Next, we performed meta-analysis of these effect sizes to calculate combined estimates 

for the total effect size, proportion of genetic confounding, and adjusted effect size 

(Supplemental Figure 4A-C). The portion of the combined effect explained by genetic 

confounding was -0.06 (95% CI [-0.09, -0.02], p=0.01, Supplemental Figure 4B), 

corresponding to 25.7% of the total effect size. After taking this genetic confounding into 

account, higher educational attainment remained significantly associated with slower pace of 

aging, although the effect was reduced (estimate = -0.16, 95% CI [-0.28, -0.05], p=0.02), 

Supplemental Figure 4C). Higher educational attainment is associated with slower pace of 

aging, even after taking both measured (via educational attainment PGSs) and unmeasured 

genetic confounding into account.

Unobserved heterogeneity/confounding bias. To ascertain the robustness of the association 

between educational attainment and DunedinPACE to other unmeasured confounding, we 

computed E-values for the estimate generated through meta-analysis. E-values represent the 

magnitude of association necessary between an unmeasured confounder and both exposure and 

outcome to fully account for observed associations (Haneuse et al., 2019; VanderWeele & Ding, 

2017). 

The E-value for the meta-analysis of the association between educational attainment and the 

pace of aging after controlling for both education PGS and tobacco smoking (Figure 4B) was 

1.69; that is, unmeasured confounder(s) would need to increase the probability of having a faster 

versus slower pace of aging 1.69 times the reported estimate to fully explain the observed 

associations. E-values for associations between DunedinPACE and education for each individual 

study are reported in Supplemental Table 3.
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Sensitivity analysis: Patterns of association with earlier generations of DNA methylation 

clocks.

To test the specificity of the pattern of associations between DunedinPACE and 

educational attainment, we repeated the primary analyses substituting alternate DNA methylation 

measures of accelerated aging (the first-generation clocks from Horvath (Horvath, 2013) and 

Hannum (Hannum et al., 2013), and the second-generation clocks PhenoAge (Levine et al., 

2018) and GrimAge (Lu et al., 2019). Of these four measures, only GrimAge showed similar 

patterns of association with education to that of DunedinPACE (Supplemental Table 4). This 

observation mirrors what is increasingly observed in other studies (e.g. Graf et al., 2022; Reed et 

al., 2022): whereas the Horvath, Hannum, and PhenoAge measures are yielding null, weak, and 

inconsistent associations in various validity tests, GrimAge and DunedinPACE are yielding 

robust associations. Of note, it is observed that GrimAge tends to be more strongly associated 

with tobacco smoking than DunedinPACE (e.g., Kankaanpaa et al., 2022) and this is evidenced 

here by the greater attenuation of associations with education after controlling for smoking. An 

explanation for this could be that GrimAge is comprised of data about packyears of tobacco 

smoking in its construction, meaning it is less likely to be independent of tobacco’s effects.
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Discussion

Higher educational attainment is robustly associated with both better brain health and 

better physical health across the life span. But it is less clear if attaining more formal education is 

also associated with slower cognitive and physical aging. In fact, in the realm of cognitive aging, 

evidence suggests that the association between education and age-related cognitive decline might 

be negligible (Lovden et al., 2020). Here we leveraged a novel approach to measuring whole-

body biological pace of aging using a DNA methylation algorithm harmonized across multiple 

different cohorts to test if education is associated with slower physical aging across the lifespan. 

Across five studies totaling almost 17,000 individuals, we demonstrate that higher 

educational attainment was associated with slower pace of aging, and that this persisted after 

accounting for an individual’s education-related genetics. This finding was observed in middle-

aged individuals from New Zealand (Dunedin study), older-aged individuals from the United 

States (Health and Retirement Study), individuals of different ages in the United Kingdom 

(Understanding Society and Generation Scotland Studies), and British teens (E-Risk Studies). 

Across different ages and geographical regions, higher educational attainment predicted slower 

pace of aging irrespective of genetic differences that are known to confer advantages in Western 

educational systems.

There are several strengths to the study. First, the finding that higher education predicts 

slower aging after accounting for genetic differences in the propensity to attain more education 

was replicated across five independent samples. Second, we replicated the association in samples 

from different populations born during different time periods. Our studies sampled populations 

resident in New Zealand, the United States, and the United Kingdom, countries with independent 

education and health systems. The five studies included individuals from 16-years to 98-years 
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old; the wide age-range of our samples means that individuals have been exposed to very 

different health or education policies throughout their life. Taken together, this suggests that 

associations are not specific to certain sociological or economic factors that advantaged certain 

generations of individuals in terms of education or health. The beneficial effect of education on 

the pace of aging over and above genetic inheritance was present regardless of when or where 

individuals were born. 

There are some caveats. First, the study populations we analyzed are white and we are 

unable to extrapolate the findings to populations of other ethnicities. Individuals from non-white 

populations have unequal access to both education and health care. In addition, the education 

PGS that we employed here was developed in white individuals; patterns of genetic linkage 

differ between ethnic groups, and there is mixed evidence as to the applicability of this score in 

non-white populations (Lewis & Vassos, 2020). Furthermore, there is evidence that non-white 

underprivileged individuals who achieve high levels of education age faster and have poorer 

health outcomes than both white individuals (Shuey & Willson, 2008) and their non-educated 

peers, and that the advantages of educational mobility on slower aging seen for white individuals 

are not evident for black individuals (Graf et al., 2022). These findings suggest the mechanisms 

defining the link between education and aging might not operate in the same way across all 

ethnic groups. Second, our studies all sampled individuals from developed nations. Globally, 

these countries are among the most privileged in terms of access to both health and educational 

resources. We are therefore unable to test whether our findings are applicable to situations where 

education and health resources are scarcer. More studies sampling low- and middle-income 

countries are necessary to test the implications of our findings on a global level. Third, apart 

from genetic differences in the propensity to educational attainment, we did not rule out other 
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potential confounds of the association between educational attainment and slower aging. For 

example, it has been demonstrated that there are strong links between parental genetic and non-

genetic factors that contribute to both the health and educational attainment of offspring (e.g., 

Wang et al., 2021). Using data on cross-generational factors and within-family designs will be 

crucial to investigate these factors; however, those data are not yet widely available along with 

data on DNA methylation and genetics that would enable us to test this. Despite this, our tests of 

unmeasured confounding suggest the associations we report are likely to be robust. Fourth, apart 

from smoking, we did not evaluate the intervening social and biological pathways that may 

account for the link between educational attainment and slower aging (Oblak et al., 2021; 

Raffington & Belsky, 2022). It will be especially important to evaluate these pathways via 

models that test the timing of risk in the life course (Chumbley et al., 2021). Fifth, the  

association between education and the pace of aging suggests that it is not simply that truncated 

education hastens aging or that a university education slows aging, it is that the non-genetic 

association between education and the pace of aging appears to operate in a graded fashion.  This 

suggests that education may impart benefits across different levels of education, although it is 

not known whether the mechanisms are the same throughout the gradient.    

Taken together, these results suggest that higher levels of education have positive effects 

on the pace of aging, and that the benefits can be realized irrespective of an individual’s genetic 

endowment. Improving access to education has the potential to benefit all strata of society and 

could contribute to a healthier aging population.
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Table 1: Association between education polygenic scores (PGS), educational attainment, and DunedinPACE. For these analyses, education 

(reported as highest educational achievement) is treated as a continuous variable. Across all five studies, individuals with high education PGS (A) 

and high educational attainment (B) had the slowest pace of aging (DunedinPACE). Further, an individuals’ genetic propensity to higher educational 

attainment (PGS) did not explain the association between education and DunedinPACE; education remained significantly associated with 

DunedinPACE even after controlling for PGS (C). Effect sizes after adjusting for tobacco smoking (using the DNA methylation-derived 

PolyEpiGenetic score, smPEGS) for each study are also shown. DunedinPACE, PGS and education are standardized to mean = 0, SD=1. All models 

include sex as a covariate. Additional covariates to control for confounders (e.g., age, batch) are also included when appropriate. To account for non-

independence of observations in the Generation Scotland and E-Risk studies, we report p-values associated with Huber-White robust standard error 

correction.
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A B C

Study Education PGS Education Education PGS          +            Education

b [95% CI] p b [95% CI] p b [95% CI] p b [95% CI] p

Dunedin -0.17 [-0.24- -0.10] <0.001 -0.38 [-0.44- -0.31] <0.001 -0.08 [-0.15- -0.01] 0.022 -0.36 [-0.43- -0.29] <0.001

adjusted for smoking -0.12 [-0.18- -0.06] <0.001 -0.26 [-0.33- -0.20] <0.001 -0.06 [-0.13-0.00] 0.048 -0.25 [-0.31- -0.18] <0.001

HRS -0.13 [-0.17- -0.09] <0.001 -0.20 [-0.24- -0.16] <0.001 -0.08 [-0.12- -0.04] <0.001 -0.18 [-0.22- -0.13] <0.001

adjusted for smoking -0.10 [-0.1- -0.07] <0.001 -0.14 [-0.18- -0.10] <0.001 -0.07 [-0.11- -0.03] <0.001 -0.12 [-0.16-0.08] <0.001

Understanding 

Society
-0.18 [-0.21- -0.15] <0.001 -0.20 [-0.23- -0.17] <0.001 -0.14 [-0.17- -0.11] <0.001 -0.16 [-0.20- -0.13] <0.001

adjusted for smoking -0.13 [-0.15- -0.10] <0.001 -0.11 [-0.14- -0.08] <0.001 -0.11 [-0.14- -0.08] <0.001 -0.08 [-0.11- -0.06] <0.001

Generation Scotland -0.15 [-0.17- -0.13] <0.001 -0.20 [-0.22- -0.18] <0.001 -0.10 [-0.12- -0.08] <0.001 -0.17 [-0.19- -0.15] <0.001

adjusted for smoking -0.10 [-0.11- -0.08] <0.001 -0.11 [-0.13- -0.09] <0.001 -0.07 [-0.09- -0.05] <0.001 -0.09 [-0.11- -0.07] <0.001

E-Risk -0.08 [-0.13- -0.03] 0.007 -0.17 [-0.21- -0.12] <0.001 -0.03 [-0.08- -0.02] 0.293 -0.16 [-0.21- -0.11] <0.001

adjusted for smoking -0.05 [-0.10- -0.01] 0.057 -0.12 [-0.17- -0.07] <0.001 -0.03 [-0.08-0.02] 0.368 -0.11 [-0.16- -0.06] <0.001

b = standardized regression coefficient, CI = Confidence Interval, p = p value
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Figure Legends

Figure 1: Distribution of DunedinPACE values across categories of educational attainment in (A) the 

Dunedin Study, (B) the U.S. Health and Retirement Study (HRS), (C) the Understanding Society Study 

(D) Generation Scotland Study, and (E) the E-Risk Study. DunedinPACE values are standardized within 

study to mean = 0, SD = 1. Educational categories are 0 = no qualification, 1 = School Certificate, 2 = High 

School Grad, 3 = University degree or higher for figures A, B, C, and D and  0 = no qualification (reference 

category), 1 = GCSE D-G, 2 = GCSE A*-C, 3 = A level for the E-Risk study, figure E. Boxes represent 

interquartile range (IQR), the line represents median and the whiskers represent 1.5*IQR beyond upper and 

lower quartile. For comparison purposes, y-axis limits are standardized across plots. 

Figure 2: Distribution of Education Polygenic Score (PGS) values across categories of educational 

attainment (left-hand column) and association with DunedinPACE (right-hand column) in (A) the 

Dunedin Study, N = 804, (B) the U.S. Health and Retirement Study (HRS), N = 2,311, (C) the 

Understanding Society Study, N = 3,620, (D) Generation Scotland Study, N =8,797, and (E) the E-Risk 

Study, N =1,507. Both PGS and DunedinPACE values are standardized within study to mean = 0, SD = 1. 

Educational categories are 1 = School Certificate, 2 = High School Grad, 3 = University degree or higher for 

figures A, B, C, and D, and 0 = no qualification (reference category), 1 = GCSE D-G, 2 = GCSE A*-C, 3 = A 

level for the E-Risk study, figure E. Boxes represent Interquartile range (IQR), the line represents median and 

the whiskers represent 1.5*IQR beyond upper and lower quartile. For comparison purposes, y-axis limits are 

standardized across plots. The linear regression is shown in blue (with surrounding confidence intervals in 

gray), and the Pearson’s correlation coefficient is denoted by r and associated p-value by p.
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Figure 3: Association between DunedinPACE and education within age group quintiles in the 

Understanding Society (A) and Generation Scotland Study (B). In both cohorts, individuals were binned 

into one of five groups on the basis of age, each group representing a 15-16 year age span. Barcharts show the 

distribution of DunedinPACE values across categories of educational attainment in each of the five age-groups. 

On average, pace of aging increases across the age-groups, but within each age group higher education predicts 

slower pace of aging. For each study, the upper table reports within-group values for the number of individuals 

per group (N), mean and SD of DunedinPACE, and slopes of the association between educational attainment 

and DunedinPACE (adjusted for sex and technical covariates). The lower table reports the t- (Understanding 

Society) or Z- (Generation Scotland) ratios comparing the slopes between educational attainment and 

DunedinPACE for different age groups.  Values in bold are significant at the p < 0.05 level. Overall, higher 

education predicts slower pace of aging across all age groups, although not significantly so among the very old.

Figure 4: Forest plots of the association between educational attainment and DunedinPACE after 

controlling for the genetics of educational attainment and tobacco smoking.  (A) shows meta-analysis of 

the association between educational attainment and DunedinPACE controlling for the education PGS  (and 

technical covariates), and (B) shows meta-analysis of the same model after the addition of exposure to tobacco 

smoking (smPEGS). The effect size estimate [+/- 95% CI] of the meta-analysis result is shown by the pale blue 

diamond, and the estimated prediction interval is shown by the red bar.  
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no qualification (reference category), 1 = GCSE D-G, 2 = GCSE A*-C, 3 = A level for the E-Risk study, 
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Overall, higher education predicts slower pace of aging across all age groups, although not significantly so 

among the very old. 

135x117mm (300 x 300 DPI) 

Page 41 of 67 Journal of Gerontology: Social Sciences



 

Figure 4: Forest plots of the association between educational attainment and DunedinPACE after controlling 
for the genetics of educational attainment and tobacco smoking.  (A) shows meta-analysis of the association 

between educational attainment and DunedinPACE controlling for the education PGS  (and technical 
covariates), and (B) shows meta-analysis of the same model after the addition of exposure to tobacco 

smoking (smPEGS). The effect size estimate [+/- 95% CI] of the meta-analysis result is shown by the pale 
blue diamond, and the estimated prediction interval is shown by the red bar.   
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Supplemental Methods

Data Sources

The Dunedin Longitudinal Study

The Dunedin Study is a longitudinal investigation of health and behavior in a complete birth cohort. Study members (N = 

1037; 91% of eligible births; 52% male) were all individuals born between April 1972 and March 1973 in Dunedin, New 

Zealand (NZ), The cohort is primarily white (93%). Assessments were carried out at birth and ages 3, 5, 7, 9, 11, 13, 15, 

18, 21, 26, 32, 38 and, most recently, 45 years, when 94% of the 997 study members still alive took part. Further details 

on Dunedin Study sample methodology has been published elsewhere (Poulton et al., 2015).

DNA methylation. DNA was isolated from whole blood drawn at the cohort’s age-45 assessment during 2017-2019.  DNA 

methylation was measured using Illumina Human-MethylationEPIC BeadChip arrays by the Molecular Genomics Shared 

Resource at Duke Molecular Physiology Institute, Duke University (USA) as described elsewhere (Belsky et al., 2022). 

SNP genotyping and imputation. Genotypes were obtained using the Illumina OmniExpress 12 BeadChip arrays (version 

1.1; Illumina, Hayward, CA) by the Molecular Genomics Shared Resource at Duke Molecular Physiology Institute, Duke 

University (USA). Additional SNPs were imputed using the IMPUTE2 software (version 2.3.1(Howie et al., 2009)) and the 

1,000 Genomes Phase-3 reference panel (Genomes Project et al., 2012). Imputation was conducted on autosomal SNPs 

appearing in dbSNP (version 140 (Sherry et al., 2001)) as described elsewhere (Belsky et al., 2016). We analyzed data 

from 804 non-Maori participants with available SNP genotyping and DNA methylation data.

The Health and Retirement Study (HRS)

HRS is a longitudinal survey of more than 20,000 participants (44 % male in 2016) over the age of 50. Detailed methods 

for this sample are published elsewhere (Sonnega et al., 2014).  Here we utilize data from those of European ancestry 

who are part of the DNA methylation subsample from the HRS 2016 Venous Blood Study (N = 4,018) (Crimmins et al., 

2017). The sample is weighted to be representative of the U.S. population.

DNA methylation. DNA was derived from whole blood. DNA methylation was measured using Illumina Human-

MethylationEPIC BeadChip arrays by Advanced Research and Diagnostics Laboratory at the University of Minnesota 

(USA) as described elsewhere (Crimmins et al., 2021). 

SNP genotyping and imputation. Genotypes were obtained using the Illumina HumanOmni2.5 BeadChips 

(HumanOmni2.5-4v1, HumanOmni2.5-8v1, HumanOmni2.5-8v1.1) by Center for Inherited Disease Research (CIDR) in 

2011, 2012, and 2015. Additional SNPs were imputed using IMPUTE2 (Howie et al., 2009), with phasing performed using 

SHAPEITv2 (Delaneau et al., 2013) and the 1,000 Genomes Phase-3 version 5 reference panel (Genomes Project et al., 
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2012) as described elsewhere. We analyzed data from 2,311 European ancestry participants with available SNP 

genotyping and DNA methylation data.

The Understanding Society Study

Understanding Society is an ongoing longitudinal panel survey of 40,000 UK households from England, Scotland, Wales 

and Northern Ireland. The survey started in 2009 and collects information about people's health, behaviors, attitudes 

and social and economic circumstances. Detailed methods for this sample are published elsewhere (Buck, 2012; Lynn, 

2009). 

DNA methylation. DNA was derived from whole blood drawn during the 2010–2013 nurse’s exam.  DNA methylation was 

measured using Illumina Human-MethylationEPIC BeadChip arrays by the Complex Disease Epigenetics Group at the 

University of Exeter Medical School (UK) as described elsewhere (Hannon et al., 2018). 

SNP genotyping and imputation. Genotypes were obtained using the Illumina HumanCoreExome 12 BeadChip arrays 

(version 1.0) by the Genotyping Facility at the Wellcome Sanger Institute (WSI; UK). Genotypes were phased using 

SHAPEITv2 (Delaneau et al., 2013) and SNPs imputed using the minimac3 (Howie et al., 2009) and the 1,000 Genomes 

Phase-3 and UK10K reference panel (Genomes Project et al., 2012). Imputation was conducted on autosomal SNPs 

appearing in dbSNP (version 140 (Sherry et al., 2001)) as described elsewhere (Hannon et al., 2018). We analyzed data 

from 3,620 white participants with available SNP genotyping and DNA methylation data.

The Generation Scotland Study

The Generation Scotland Study is a family-based cohort study of 24,080 participants (41% male) aged 18 years and older. 

Data were collected between 2006 and 2011 and covered medical, behavior and lifestyle factors, along with collection of 

blood for DNA analysis. Detailed methods for this sample are published elsewhere (Smith et al., 2013).

DNA methylation. DNA was derived from whole blood drawn during GP visits between 2006 and 2011. DNA methylation 

was measured using Illumina Human-MethylationEPIC BeadChip arrays as described elsewhere (Howard et al., 2022). 

SNP genotyping and imputation. Genotypes were obtained using the Illumina OmniExpressExome-8 BeadChip arrays 

(versions 1.0 and 1.2). Additional SNPs were imputed by the Sanger Imputation Service with the Haplotype Reference 

Consortium panel v1.1 as described elsewhere (Nagy et al., 2017). We analyzed data from 8,613 white participants with 

available SNP genotyping and DNA methylation data.

The E-Risk Study

The Environmental Risk Longitudinal Twin Study (E-Risk) tracks the development of a birth cohort of 2,232 British 

participants. The sample was drawn from a larger birth register of twins born in England and Wales in 1994–1995. 

Briefly, the E-Risk sample was constructed in 1999–2000, when 1116 families (93% of those eligible) with same-sex 5-

year-old twins participated in home-visit assessments. This sample comprised 56% monozygotic (MZ) and 44% dizygotic 
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(DZ) twin pairs; sex was evenly distributed within zygosity (49% male). Home-visits assessments took place when 

participants were aged 5, 7, 10, 12, and most recently at 18 years, when 93% of the participants took part and blood was 

drawn to obtain DNA. Further details about the sample are reported elsewhere(Moffitt & Team, 2002).

DNA methylation. DNA was derived from whole blood drawn at the cohort’s age-18 assessment during 2012-2013.  DNA 

methylation was measured using Illumina Human-450K BeadChip arrays by the Complex Disease Epigenetics Group at 

the University of Exeter Medical School (UK) as described elsewhere (Marzi et al., 2018).

SNP genotyping and imputation. Genotypes were obtained using the Illumina Omni Express 24 BeadChip arrays (version 

1.1) by the Molecular Genomics Shared Resource at Duke Molecular Physiology Institute, Duke University (USA). 

Additional SNPs were imputed using the IMPUTE2 software (version 2.3.1 (Howie et al., 2009)) and the 1,000 Genomes 

Phase-3 reference panel (Genomes Project et al., 2012). Imputation was conducted on autosomal SNPs appearing in 

dbSNP (version 140 (Sherry et al., 2001)) as described elsewhere (Wertz et al., 2020). We analyzed data from 1,507 

white participants with available SNP genotyping and DNA methylation data.

Tobacco smoking

In addition to generating the DNA methylation measure of smoking outlined in the main text (smPEGs), each study 

collected data about self-reported current smoking (yes/no) at the time of DNA methylation collection apart from 

Generation Scotland, where smoking is recorded as number of pack years smoked up to the time of assessment.

Alternate DNA methylation algorithms

In addition to DunedinPACE, we also calculated values for four additional DNA methylation algorithms; the Horvath 

Clock (Horvath, 2013), the Hannum clock (Hannum et al., 2013), PhenoAge (Levine et al., 2018), and GrimAge (Lu et al., 

2019). These clocks were calculated using the online calculator found at https://dnamage.genetics.ucla.edu/new. The 

‘normalization’ and ‘advanced analysis in blood’ options were selected, and data were anonymized prior to upload. 

From the results file, we extracted the corresponding DNA methylation age calculations (DNAmAge, DNAmAgeHannum, 

DNAmPhenoAge, DNAmGrimAge). Finally, to derive estimates of DNA methylation age advancement, these values were 

further residualised for chronological age at the time of the DNA assessment.
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Supplemental Figures

Supplemental Figure 1: Five studies representing 17,000 individuals born and raised in different countries and in 

different historical periods. For each study, the density plot shows the years when the study members were born (in 

pink, scaled on the bottom x-axis) and how old they were when their pace of aging was assessed (in blue, scaled on the 

top x-axis). The y-axis represents kernel density estimates. Note: the Dunedin and E-Risk studies include individuals who 

were born within the same 1- and 2-year periods, respectively, and who were each assessed when they were the same 

chronological age. 
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Supplemental Figure 2: Association between DunedinPACE and Education within education polygenic score quintiles in each of the five studies. In all cohorts, 

the individuals were binned into quintiles containing 20% of the cohort on the basis of their polygenic scores, from the lowest to the highest scoring individuals. 

Bar charts show the distribution of DunedinPACE values across categories of educational attainment in each of the five polygenic score groups. Within each PGS 

quintile, higher education predicts slower pace of aging. The left-hand sides of the tables report within-group values for the number of individuals per group (N), 

mean and SD of DunedinPACE, and slopes of the association between educational attainment and DunedinPACE (adjusted for sex and technical covariates). The 

right-hand side of the tables reports the t- (Dunedin Study, HRS , and Understanding Society) or Z- (Generation Scotland and E-Risk) ratios comparing the slopes 

between educational attainment and DunedinPACE across the quintiles.  Values in bold are significant at the p < 0.05 level. In all cohorts, higher education 

predicted slower pace of aging in each quintile (with the sole exception of the top quintile in the E-Risk cohort).  There were no significant differences in the 

magnitude of association between indivduals regardless of where they fell on the PGS distribution. 

 

t-ratio between slopes

PGS 
quintile N mean(SD) 

DunedinPACE slope[95% CI] 2 3 4 5

1 161 0.25(0.94) -0.35[-0.50- -
0.21] -1.37 0.53 0.38 1.12

2 161 0.05(0.96) -0.22[-0.35- -
0.08] 1.87 1.69 2.39

3 161 0.08(0.99) -0.41[-0.56- -
0.26] -0.14 0.61

4 161 -0.11(1.02) -0.40[-0.55- -
0.24] 0.73

5 160 -0.27(1.01) -0.48[-0.65- -
0.31]

A. Dunedin Study
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t-ratio between slopes

PGS 
quintile N mean(SD) 

DunedinPACE slope[95% CI] 2 3 4 5

1 463 0.21(0.97)
-0.14[-0.22- -

0.05] 0.40 1.70 0.24 1.46

2 462 0.07(0.98)
-0.16[-0.25- -

0.07] 1.24 -0.15 1.04

3 462 -0.08(0.99)
-0.24[-0.33- -

0.15] -1.39 -0.11

4 462 -0.06(1.03)
-0.15[-0.24- -

0.06] 1.18

5 462 -0.14(0.99)
-0.23[-0.34- -

0.13]

t-ratio between slopes

PGS 
quintile N mean(SD) 

DunedinPACE slope[95% CI] 2 3 4 5

1 724 0.27(1.03) -0.17[-0.24- -
0.10] 0.72 -0.73 0.11 -0.34

2 724 0.03(1.05) -0.20[-0.27- -
0.13] -1.48 -0.62 -1.05

3 724 0.02(1.01) -0.13[-0.20- -
0.06] 0.86 0.38

4 724 -0.08(0.91) -0.17[-0.24- -
0.10] -0.45

5 724 -0.24(0.93) -0.15[-0.22- -
0.08]

B. HRS

C. Understanding Society
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Z-ratio between slopes

PGS 
quintile N mean(SD) 

DunedinPACE slope[95% CI] 2 3 4 5

1 1723 0.21(1.05) -0.21[-0.25- -
0.16] -2.20 -1.22 -1.31 -0.86

2 1723 0.07(1.01) -0.14[-0.18- -
0.09] 0.95 0.75 1.00

3 1723 -0.02(0.98) -0.17[-0.21- -
0.12] -0.14 0.18

4 1722 -0.08(0.99) -0.16[-0.21- -
0.11] 0.30

5 1722 -0.18(0.92) -0.17[-0.23- -
0.11]

Z-ratio between slopes

PGS 
quintile N mean(SD) 

DunedinPACE slope[95% CI] 2 3 4 5

1 302 0.12(1.14) -0.19[-0.31- -
0.08] 0.13 -0.31 -0.45 -1.97

2 302 0.00(0.97) -0.20[-0.31- -
0.10] -0.46 -0.60 -2.18

3 301 0.04(0.94) -0.17[-0.27- -
0.07] -0.16 -1.78

4 301 0.01(0.99) -0.16[-0.27- -
0.05] -1.54

5 301 -0.18(0.93) -0.03[-0.14-0.07]

D. Generation Scotland

E. E-Risk Study
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Supplemental Figure 3: Investigation of selection bias. Selection bias can result when individuals participating in a 

research study differ systematically from the population from which they are drawn. To test whether selection was a 

source of bias in our analyses, we turned to the Dunedin and E-Risk Studies. We conducted attrition analyses using the 

education PGS, educational attainment, and childhood socioeconomic status (SES) to determine whether participants 

included in this study (those with DunedinPACE data) were representative of the original cohorts from which they are 

drawn (restricted to European-descent individuals with genotype data). Boxplots of (A) Education PGS scores, (B) 

Educational attainment, and (C) childhood SES across four sub-groups of Dunedin (left-hand column) and E-Risk (right-

hand column) Study participants. In Dunedin, the sub-groups represent successively nested groups of 1) individuals with 

genotype data (N = 918),  2) individuals who were alive at age 45 (N = 899), 3) those who attended the age 45 

assessment (N = 874), and 4) individuals with DunedinPACE data at age 45 (N = 804; the individuals included in the 

present study). For E-Risk, the groups are: 1) individuals with genotype data (N = 1,999),  2) those who attended the age 

18 assessment (N = 1,863), 3) individuals with DunedinPACE data at age 18 (N = 1,509) and 4) the individuals included in 

the present study (N = 1,507). Both the Dunedin and E-Risk studies represent the populations from which they were 

drawn and have high retention rates with no evidence of selective attrition in relation to genetic and exposure variables.
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Supplemental Figure 4:  Forest Plots of effect-size estimates from Genetic Sensitivity Analysis using GsensX. The 

GsensX-estimated total effect size (not adjusted for unmeasured genetic confounding) for each of the five cohorts, as 

well as the combined total from meta-analysis is shown in (A). The cohort-specific and combined estimates of genetic 

confounding are shown in (B). The cohort-specific and combined effect size after adjusting for genetic confounding are 

shown in (C). The combined effect size after adjusting for genetic confounding remained significantly different from zero 

(estimate =   -0.16, 95% CI [-0.28, -0.05], p=0.02). The effect size estimate [+/- 95% CI] of the meta-analysis result is 

shown by the pale blue diamond, and the estimated prediction interval is shown by the red bar.

          A.

          B.

          C.
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Study
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Estimate (95% CI)
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Estimate (95% CI)
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Supplemental Tables

Supplemental Table 1: Descriptive statistics for the five studies included in the analysis. Panel A shows the N and percentages of participants per level of 

education in each of the five studies. Panel B shows the mean (and Standard Deviation (SD)) Education PGS value per level of education in each of the five 

studies. Panel C shows the mean (and Standard Deviation (SD)) standardized DunedinPACE value per level of education in each of the five studies. Panel D shows 

the mean (and Standard Deviation (SD)) DunedinPACE value expressed as years of aging/chronological year, per level of education in each of the five studies. 

Education PGS and DunedinPACE values are standardized to mean = 0, SD = 1. *Levels of education for E-Risk study are (1) no qualification, (2) GCSE grades D-G, 

(3) GCSE grades A*-C, and (4) A level.

Dunedin HRS
Understanding 

Society

Generation 

Scotland
E-Risk*

Panel A N (%) N (%) N (%) N (%) N (%)

Education level

No qualification 114 (14.2) 198 (8.6) 471 (13.0) 744 (8.6) 51 (3.4)

School Certificate 113 (14.1) 104 (4.5) 1224 (33.8) 1813 (21.1) 287 (19.0)

High School Grad 335 (41.7) 1330 (57.6) 677 (18.7) 1613 (18.7) 463 (30.7)

University degree or higher 242 (30.1) 679 (29.4) 1248 (34.5) 4443 (51.6) 706 (46.8)

Panel B: Education PGS mean (SD) mean(SD) mean (SD) mean (SD) mean (SD)

Education level

No qualification -0.44 (0.94) -0.55(1.01) -0.39 (0.97) -0.51 (0.93) -0.61 (0.95)

School Certificate -0.34 (1.09) -0.25(0.91) -0.14 (0.99) -0.37 (0.91) -0.35 (0.95)

High School Grad 0.04 (0.95) -0.11(0.95) -0.03 (0.98) -0.09 (0.94) -0.18 (0.97)

University degree or higher 0.31 (0.93) 0.42(0.95) 0.30 (0.95) 0.27 (0.98) 0.30 (0.94)

Mean difference (no qualification vs 

University degree or higher)
0.75 0.97 0.69 0.78 0.91
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Dunedin HRS
Understanding 

Society

Generation 

Scotland
E-Risk*

Panel C: Standardized DunedinPACE mean (SD) mean(SD) mean (SD) mean (SD) mean (SD)

Education level

No qualification 0.68 (1.03) 0.47(1.00) 0.60 (1.02) 0.59 (1.03) 0.36 (0.98)

School Certificate 0.40 (1.00) 0.38(1.01) 0.07 (0.94) 0.23 (1.01) 0.24 (1.02)

High School Grad -0.05 (0.90) 0.03(0.98) -0.02 (1.03) -0.08 (0.98) 0.02 (0.96)

University degree or higher -0.45 (0.85) -0.26(0.95) -0.28 (0.92) -0.16 (0.94) -0.14 (0.99)

Mean difference (no qualification vs 

University degree or higher)
1.13 0.73 0.88 0.75 0.50

Panel D: DunedinPACE (years of 

aging/chronological year

mean (SD) mean (SD) mean (SD) mean (SD) mean (SD)

Education level

No qualification 1.06 (0.13) 1.08 (0.15) 1.14(0.14) 1.10 (0.13) 1.10 (0.09)

School Certificate 1.02 (0.13) 1.07 (0.15) 1.07(0.13) 1.05 (0.13) 1.09 (0.10)

High School Grad 0.97 (0.12) 1.02 (0.14) 1.06(0.14) 1.02 (0.12) 1.07 (0.09)

University degree or higher 0.91 (0.11) 0.98 (0.14) 1.02(0.13) 1.01 (0.12) 1.06 (0.09)

Mean difference (no qualification vs 

University degree or higher)

0.15 (1.80 

months/year)

0.11 (1.32 

months/year)

0.12 (1.44 

months/year)

0.09 (1.08 

months/year)

0.04 (0.48 

months/year)
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Supplemental Table 2: Association between education polygenic scores, educational attainment and DunedinPACE, after controlling for self-reported tobacco 

smoking. In addition to assessing exposure to smoking via a smoking PolyEpiGenetic score, smPEGS), each study collected data about self-reported current 

smoking (yes/no) at the time of DNA methylation collection apart from Generation Scotland, where smoking was recorded as number of pack years smoked up 

to the time of assessment.  As in Table 1, smoking reduces the association between both PGS (A) and education (B) and DunedinPACE; however, it does not fully 

account for the faster aging in individuals who have low PGS and low educational attainment. For these analyses, education (reported as highest educational 

achievement) is treated as a continuous variable. PGS, education, and DunedinPACE are standardized to mean = 0, SD=1. Smoking is assessed as current smoking 

(yes/no), except for Generation Scotland where smoking pack years is the available variable. All models include sex as a covariate. Additional covariates to 

control for confounders (e.g., age, data batch) are also included when appropriate. To account for non-independence of observations in the Generation Scotland 

and E-Risk studies, we report p-values associated Huber-White robust standard error correction.  

A B C

Study Education PGS Education Education PGS                 +               Education

b[95% CI] p b[95% CI] p b[95% CI] p b[95% CI] p

Dunedin -0.12[-0.19- -0.06] <0.001 -0.29[-0.35- -0.22] <0.001 -0.06[-0.13-0.00] 0.048 -0.27[-0.34- -0.20] <0.001

HRS -0.11[-0.15- -0.07] <0.001 -0.16[-0.20- -0.12] <0.001 -0.08[-0.12- -0.04] <0.001 -0.14[-0.18- -0.10] <0.001

Understanding 

Society
-0.14[-0.17- -0.11] <0.001 -0.13[-0.16- -0.10] <0.001 -0.12[-0.15- -0.09] <0.001 -0.10[-0.14- -0.07] <0.001

Generation Scotland -0.12[-0.14- -0.11] <0.001 -0.16[-0.18- -0.14] <0.001 -0.08[-0.10- -0.06] <0.001 -0.14[-0.16- -0.12] <0.001

E-Risk -0.04[-0.09-0.00] 0.128 -0.12[-0.17- -0.07] <0.001 -0.02[-0.07-0.03] 0.569 -0.11[-0.17- -0.06] <0.001
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Supplemental Table 3: E-values for effect size estimates for individual studies. Estimates are those described in Table 1 and reflect associations between 

DunedinPACE and (A) education PGS, (B) educational attainment, and (C) educational attainment after controlling for PGS. Effect sizes and E-values after 

adjusting for tobacco smoking (using the DNA methylation-derived PolyEpiGenetic score, smPEGS) for each study are also shown. DunedinPACE, PGS and 

education are standardized to mean = 0, SD=1.  All models include sex as a covariate. Additional covariates to control for confounders (e.g. age, batch) are also 

included when appropriate. 

A B C

Study Education PGS Education Education PGS               +               Education

 b[95% CI] E-value[SE] b[95% CI]
E-

value[SE]
b[95% CI] E-value[SE] b[95% CI]

E-

value[SE]

Dunedin -0.17[-0.24- -0.10] 1.61[1.42] -0.38[-0.44- -0.31] 2.18[2] -0.08[-0.15- -0.01] 1.36[1.11] -0.36[-0.43- -0.29] 2.12[1.93]

adjusted for smoking -0.12 [-0.18- -0.06] 1.47[1.30] -0.26 [-0.33- -0.20] 1.85[1.72] -0.06 [-0.13-0.00] 1.30[1.00] -0.25 [-0.31- -0.18] 1.82[1.65]

HRS -0.13[-0.17- -0.09] 1.5[1.39] -0.20[-0.24- -0.16] 1.69[1.58] -0.08[-0.12- -0.04] 1.36[1.23] -0.18[-0.22- -0.13] 1.64[1.52]

adjusted for smoking -0.10 [-0.14- -.07] 1.42[1.32] -0.14 [-0.18- -0.10] 1.53[1.42] -0.07 [-0.11- -0.03} 1.33[1.20] -0.12 [-0.16-0.08] 1.47[1.36]

Understanding 

Society
-0.18[-0.21- -0.15] 1.64[1.56] -0.20[-0.23- -0.17] 1.69[1.61] -0.14[-0.17- -0.11] 1.53[1.45] -0.16[-0.20- -0.13] 1.58[1.49]

adjusted for smoking -0.13 [-0.15- -0.10] 1.50[1.43] -0.11 [-0.14- -0.08] 1.45[1.36] -0.11 [-0.14- -0.08] 1.45[1.36] -0.08 [-0.11- -0.06] 1.36[1.28]

Generation Scotland -0.15[-0.17- -0.13] 1.56[1.5] -0.20[-0.22- -0.18] 1.69[1.64] -0.10[-0.12- -0.08] 1.42[1.36] -0.17[-0.19- -0.15] 1.61[1.56]

adjusted for smoking -0.10 [-0.11- -0.08] 1.42[1.38] -0.11 [-0.13- -0.09] 1.45[1.39] -0.07 [-0.09- -0.05] 1.33[1.27] -0.09 [-0.11- -0.07] 1.39[1.33]

E-Risk -0.08[-0.13- -0.03] 1.36[1.2] -0.17[-0.21- -0.12] 1.61[1.49] -0.03[-0.08- -0.02] 1.20[1.01] -0.16[-0.21- -0.11] 1.58[1.45]

adjusted for smoking -0.05 [-0.10- -0.01] 1.27[1.07] -0.12 [-0.17- -0.07] 1.47[1.33] -0.03 [-0.08-0.02] 1.20[1.01] -0.11 [-0.16- -0.06] 1.45[1.30]
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Supplemental Table 4: Associations between education and earlier generations of DNA methylation algorithms in the five cohorts. Estimates 

mirror those described in Table 1 and reflect associations between values for the five different DNA methylation ‘clocks’ (Horvath, Hannum, PhenoAge, 

GrimAge, and DunedinPACE), and (A) education PGS, (B) educational attainment, and (C) educational attainment after controlling for PGS. Effect sizes after 

adjusting for tobacco smoking (using the DNA methylation-derived PolyEpiGenetic score, smPEGS) for each study are also shown. As is standard for generating 

age acceleration values for the first- and second-generation measures in age-varying populations, we residualized DNA methylation measures for age in the HRS 

(Panel II), Understanding Society (Panel III), Generation Scotland (Panel IV) studies (N.B. for the purposes of comparisons within this table, we also age-

residualize DunedinPACE values in these studies, though this has little consequence for effect sizes compared to those reported in the main text and Table 1). 

DNA methylation measures, PGS and education are standardized to mean = 0, SD=1.  All models include sex as a covariate. Additional covariates to control for 

confounders (e.g. batch) are also included when appropriate. To account for non-independence of observations in the Generation Scotland and E-Risk studies, 

we report p-values associated with Huber-White robust standard error correction.

Panel I: Dunedin A B C

DNA methylation 
algorithm

Education PGS Education Education PGS          +            Education

b [95% CI] p b [95% CI] p b [95% CI] p b [95% CI] p

Horvath -0.02[-0.09-0.05] 0.579 -0.05[-0.12-0.02] 0.140 -0.01[-0.08-0.06] 0.864 -0.05[-0.12-0.02] 0.169

adjusted for smoking -0.01[-0.08-0.06] 0.767 -0.03[-0.10-0.04] 0.396 0.00[-0.07-0.07] 0.923 -0.03[-0.10-0.04] 0.423

Hannum -0.02[-0.08-0.05] 0.647 -0.04[-0.11-0.02] 0.206 0.00[-0.07-0.06] 0.898 -0.04[-0.11-0.03] 0.236

adjusted for smoking 0.00[-0.06-0.07] 0.895 0.01[-0.06-0.08] 0.795 0.00[-0.07-0.07] 0.943 0.01[-0.06-0.08] 0.814

PhenoAge -0.04[-0.11-0.03] 0.315 -0.1[-0.17- -0.03] 0.005 -0.01[-0.08-0.06] 0.785 -0.10[-0.17- -0.03] 0.008

adjusted for smoking -0.01[-0.08-0.06] 0.752 -0.04[-0.11-0.03] 0.272 0.00[-0.07-0.07] 0.955 -0.04[-0.12-0.04] 0.292

GrimAge -0.13[-0.2- -0.07] <0.001 -0.38[-0.44- -0.31] <0.001 -0.04[-0.10-0.03] 0.267 -0.37[-0.43- -0.3] <0.001

adjusted for smoking -0.04[-0.08-0.01] 0.093 -0.14[-0.18- -0.10] <0.001 -0.01[-0.05-0.04] 0.792 -0.14[-0.18- -0.09] <0.001

DunedinPACE -0.17[-0.24- -0.10] <0.001 -0.38[-0.44- -0.31] <0.001 -0.08[-0.15- -0.01] 0.022 -0.36[-0.43- -0.29] <0.001

adjusted for smoking -0.12[-0.18- -0.06] <0.001 -0.26[-0.33- -0.20] <0.001 -0.06[-0.13-0.00] 0.048 -0.25[-0.31- -0.18] <0.001
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Panel II: HRS 
A B C

DNA methylation 
algorithm

Education PGS Education Education PGS          +            Education

b [95% CI] p b [95% CI] p b [95% CI] p b [95% CI] p

Horvath -0.02[-0.06-0.02] 0.420 -0.02[-0.06-0.02] 0.386 -0.01[-0.06-0.03] 0.556 -0.01[-0.06-0.03] 0.503

adjusted for smoking -0.02[-0.06-0.02] 0.400 -0.02[-0.06-0.02] 0.340 -0.01[-0.06-0.03] 0.543 -0.02[-0.06-0.03] 0.449

Hannum -0.03[-0.07-0.01] 0.118 -0.01[-0.05-0.03] 0.500 -0.03[-0.07-0.01] 0.152 -0.01[-0.05-0.04] 0.802

adjusted for smoking -0.02[-0.06-0.02] 0.356 0.02[-0.02-0.06] 0.436 -0.03[-0.07-0.02] 0.240 0.02[-0.02-0.07] 0.286

PhenoAge -0.07[-0.11- -0.02] 0.002 -0.08[-0.12- -0.04] <0.001 -0.05[-0.09-0.00] 0.036 -0.07[-0.11- -0.03] 0.001

adjusted for smoking -0.05[-0.09- -0.01] 0.013 -0.05[-0.09- -0.01] 0.011 -0.04[-0.08-0.00] 0.061 -0.04[-0.09-0.00] 0.050

GrimAge -0.13[-0.17- -0.09] <0.001 -0.24[-0.27- -0.20] <0.001 -0.07[-0.11- -0.03] <0.001 -0.22[-0.26- -0.18] <0.001

adjusted for smoking -0.09[-0.12- -0.06] <0.001 -0.15[-0.18- -0.12] <0.001 -0.05[-0.08- -0.02] 0.002 -0.13[-0.17- -0.10] <0.001

DunedinPACE -0.13[-0.17- -0.09] <0.001 -0.20[-0.24- -0.16] <0.001 -0.08[-0.12- -0.04] <0.001 -0.18[-0.22- -0.14] <0.001

adjusted for smoking -0.10[-0.14- -0.07] <0.001 -0.14[-0.18- -0.11] <0.001 -0.07[-0.11- -0.03] <0.001 -0.13[-0.17- -0.09] <0.001
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Panel III: 
Understanding Society

A B C

DNA methylation 
algorithm

Education PGS Education Education PGS          +            Education

b [95% CI] p b [95% CI] p b [95% CI] p b [95% CI] p

Horvath -0.02[-0.04-0.00] 0.125 0.01[-0.02-0.03] 0.494 -0.02[-0.04-0.00] 0.078 0.01[-0.01-0.04] 0.270

adjusted for smoking -0.01[-0.03-0.01] 0.377 0.02[0.00-0.05] 0.076 -0.02[-0.04-0.01] 0.183 0.03[0.00-0.05] 0.042

Hannum -0.04[-0.07- -0.01] 0.015 -0.03[-0.06-0.00] 0.098 -0.03[-0.06-0.00] 0.036 -0.02[-0.05-0.01] 0.028

adjusted for smoking -0.02[-0.05-0.01] 0.106 -0.01[-0.04-0.03] 0.750 -0.02[-0.06-0.01] 0.113 0.00[-0.03-0.03] 0.955

PhenoAge -0.07[-0.1- -0.04] <0.001 -0.06[-0.09- -0.03] <0.001 -0.06[-0.09- -0.03] <0.001 -0.04[-0.07- -0.01] 0.011

adjusted for smoking -0.05[-0.08- -0.02] 0.0001 -0.02[-0.05-0.02] 0.318 -0.05[-0.08- -0.02] 0.002 0.00[-0.04-0.03] 0.793

GrimAge -0.13[-0.16- -0.11] <0.001 -0.16[-0.19- -0.14] <0.001 -0.10[-0.13- -0.07] <0.001 -0.14[-0.16- -0.11] <0.001

adjusted for smoking -0.06[-0.08- -0.04] <0.001 -0.05[-0.07- -0.03] <0.001 -0.05[-0.07- -0.04] <0.001 -0.03[-0.05- -0.01] 0.001

DunedinPACE -0.19[-0.22- -0.16] <0.001 -0.21[-0.24- -0.17] <0.001 -0.15[-0.18- -0.11] <0.001 -0.17[-0.20- -0.13] <0.001

adjusted for smoking -0.13[-0.16- -0.10] <0.001 -0.11[-0.14- -0.08] <0.001 -0.11[-0.14- -0.08] <0.001 -0.08[-0.11- -0.05] <0.001
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Panel IV: Generation 
Scotland

A B C

DNA methylation 
algorithm

Education PGS Education Education PGS          +            Education

b [95% CI] p b [95% CI] p b [95% CI] p b [95% CI] p

Horvath -0.03[-0.05- -0.01] 0.020 0.00[-0.02-0.02] 0.943 -0.03[-0.05- -0.01] 0.013 0.01[-0.01-0.03] 0.395

adjusted for smoking -0.02[-0.04-0.00] 0.060 0.01[-0.01-0.03] 0.403 -0.03[-0.05-0.00] 0.026 0.02[-0.01-0.04] 0.144

Hannum -0.02[-0.04-0.00] 0.080 -0.02[-0.04-0.00] 0.115 -0.02[-0.04-0.01] 0.175 -0.01[-0.03-0.01] 0.277

adjusted for smoking -0.01[-0.03-0.01] 0.313 0.00[-0.03-0.02] 0.703 -0.01[-0.03-0.01] 0.344 0.00[-0.02-0.02] 0.933

PhenoAge -0.07[-0.09- -0.04] <0.001 -0.08[-0.1- -0.05] <0.001 -0.05[-0.07- -0.02] <0.001 -0.06[-0.08- -0.04] <0.001

adjusted for smoking -0.04[-0.06- -0.02] <0.001 -0.04[-0.06- -0.02] <0.001 -0.03[-0.05- -0.01] 0.004 -0.03[-0.05- -0.01] 0.015

GrimAge -0.15[-0.17- -0.13] <0.001 -0.22[-0.24- -0.2] <0.001 -0.09[-0.11- -0.07] <0.001 -0.19[-0.21- -0.17] <0.001

adjusted for smoking -0.06[-0.08- -0.05] <0.001 -0.08[-0.1- -0.07] <0.001 -0.04[-0.06- -0.03] <0.001 -0.07[-0.09- -0.06] <0.001

DunedinPACE -0.16[-0.18- -0.14] <0.001 -0.21[-0.23- -0.18] <0.001 -0.10[-0.13- -0.08] <0.001 -0.17[-0.19- -0.15] <0.001

adjusted for smoking -0.10[-0.12- -0.08] <0.001 -0.12[-0.14- -0.1] <0.001 -0.07[-0.09- -0.05] <0.001 -0.10[-0.12- -0.07] <0.001
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Panel V: E-Risk A B C

DNA methylation 
algorithm

Education PGS Education Education PGS          +            Education

b [95% CI] p b [95% CI] p b [95% CI] p b [95% CI] p

Horvath -0.05[-0.10-0.00] 0.063 -0.04[-0.09-0.01] 0.165 -0.04[-0.09-0.01] 0.135 -0.03[-0.08-0.02] 0.375

adjusted for smoking -0.05[-0.10- -0.01] 0.040 -0.06[-0.11- -0.01] 0.051 -0.04[-0.09-0.01] 0.121 -0.04[-0.10-0.01] 0.148

Hannum 0.01[-0.03-0.06] 0.600 -0.01[-0.05-0.04] 0.793 0.02[-0.03-0.07] 0.526 -0.01[-0.06-0.04] 0.664

adjusted for smoking 0.01[-0.04-0.05] 0.824 -0.03[-0.08-0.02] 0.288 0.01[-0.03-0.06] 0.580 0.03[-0.09-0.02] 0.242

PhenoAge -0.04[-0.09-0.01] 0.111 -0.11[-0.15- -0.06] <0.001 -0.01[-0.06-0.04] 0.686 -0.10[-0.15- -0.05] <0.001

adjusted for smoking -0.04[-0.08-0.01] 0.178 -0.10[-0.15- -0.05] <0.001 -0.01[-0.06- -0.04] 0.704 -0.10[-0.15- -0.04] <0.001

GrimAge -0.13[-0.18- -0.08] <0.001 -0.27[-0.32- -0.23] <0.001 -0.05[-0.10-0.00] 0.056 -0.26[-0.31- -0.21] <0.001

adjusted for smoking -0.08[-0.12- -0.03] 0.002 -0.15[-0.19- -0.10] <0.001 -0.04[-0.09-0.00] 0.096 -0.13[-0.18- -0.09] <0.001

DunedinPACE -0.08 [-0.13- -0.03] 0.007 -0.17 [-0.21- -0.12] <0.001 -0.03 [-0.08- -0.02] 0.293 -0.16 [-0.21- -0.11] <0.001

adjusted for smoking -0.05 [-0.10- -0.01] 0.057 -0.12 [-0.17- -0.07] <0.001 -0.03 [-0.08-0.02] 0.368 -0.11 [-0.16- -0.06] <0.001
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