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Abstract

Epigenetic clocks are a common group of tools used to measure biological aging—the

progressive deterioration of cells, tissues, and organs. Epigenetic clocks have been

trained almost exclusively using blood-based tissues, but there is growing interest in

estimating epigenetic age using less-invasive oral-based tissues (i.e., buccal or saliva)

in both research and commercial settings. However, differentiated cell types across

body tissues exhibit unique DNA methylation landscapes and age-related alterations

to the DNA methylome. Applying epigenetic clocks derived from blood-based tissues

to estimate epigenetic age of oral-based tissues may introduce biases. We tested the

within-person comparability of common epigenetic clocks across five tissue types:

buccal epithelial, saliva, dry blood spots, buffy coat (i.e., leukocytes), and peripheral

blood mononuclear cells. We tested 284 distinct tissue samples from 83 individuals

aged 9–70years. Overall, there were significant within-person differences in epigenetic

clock estimates from oral-based versus blood-based tissues, with average differences

of almost 30years observed in some age clocks. In addition, most epigenetic clock esti-

mates of blood-based tissues exhibited low correlation with estimates from oral-based

tissues despite controlling for cellular proportions and other technical factors. Notably,

the Skin and Blood clock exhibited the greatest concordance across all tissue types,
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1 | INTRODUCTION

Measurements of biological age aim to capture the progressive

deterioration of cells, tissues, and organs (López-Otín et al., 2013;

Schmauck-Medina et al., 2022). Over the past decade, biological age

measurements have provided new insights into the diverse trajec-

tories of aging and related health risks that are often masked by

reliance on chronological age. Among the varied methods proposed

and tested for measuring biological age (Ferrucci et al., 2020), epi-

genetic age clocks—which are based on patterns of change in DNA

methylation (DNAm)—stand out for their prevalence and utility

(Horvath & Raj, 2018; Salameh et al., 2020). These clocks have

been applied widely across research fields, enhancing our under-

standing of aging in diverse contexts ranging from epidemiology to

behavioral science. In particular, epigenetic age acceleration, when

measured epigenetic age exceeds chronological age, has been asso-

ciated with increased risk of multiple age-related diseases and early

mortality (Fransquet et al., 2019).

Epigenetic clocks make use of the aging- and healthspan-

related changes that take place in the DNA methylome by applying

elastic-net regression methods over a wide range of DNAm mea-

surements in order to estimate a chosen outcome. Several gener-

ations of epigenetic clocks have been constructed via training on

various outcomes such as chronological age in first-generation

clocks (Hannum et al., 2013; Horvath, 2013; Horvath et al., 2018;

McEwen et al., 2020), phenotypic measurements of healthspan and

time-to-death in second-generation clocks (Levine et al., 2018; Lu

et al., 2022), and longitudinal physiological measurements of the

pace of aging (Belsky et al., 2022). Parameters describing the as-

sociation between DNAm measurements and a chosen outcome(s)

in a training population are then applied to compute the epigenetic

clock estimates of secondary samples.

Previous research has established wide intraindividual and inter-

individual variations in cellular composition and aging trajectories

measured by DNAm (Adalsteinsson et al., 2012; Patrick et al., 2020;

Theda et al., 2018). Each cell type has a unique DNAm signature

(Hearn et al., 2019; Kim & Costello, 2017; Zilbauer et al., 2013). Thus,

estimates of epigenetic clocks can be skewed if cellular compositions

vary across samples (Zhang et al., 2023) or if an epigenetic clock is

computed in tissue types that differ from those in which the clocks

were originally trained. For example, computing epigenetic clock

estimates in saliva samples using clocks trained on blood-based

tissues could result in different estimates of age acceleration due

to differing DNAm signatures of blood- versus oral-based tissues.

Furthermore, each tissue type can age at different rates within the

same individual, thereby compounding the problem of measuring

epigenetic clocks across varying tissue types and cellular composi-

tions (Oh et al., 2023; Tian et al., 2023).

To overcome the problem of cell type heterogeneity, some epi-

genetic clocks have been constructed on multiple tissue types, such

as the Horvath pan-tissue clock (Horvath, 2013). However, most

epigenetic clocks have been constructed using DNAm signatures of

blood-based tissues such as whole blood (i.e., leukocytes) or periph-

eral blood mononuclear cells (PBMCs) (Belsky et al., 2022; Hannum

et al., 2013; Levine et al., 2018; Lu et al., 2022). Given the challenges

in blood collection for large population-based cohorts, there is a

growing desire among researchers to use less invasive tissues, such

as buccal or saliva (Chang & Lin, 2023; Kim, Joyce, et al., 2023; Kim,

Yaffe, et al., 2023; Raffington et al., 2021). These tissues do not re-

quire trained phlebotomists, can be collected in home settings, and

there is less hesitancy among study participants to provide oral-

based samples in comparison to having their blood drawn. In addition

to academic research, commercial companies which offer epigenetic

clock estimates for direct-to-consumer and health-care uses may

prefer to use oral-based tissues to derive clock estimates that were

developed in blood. Using oral-based tissues as the source of clock

estimates could expand the applications of epigenetic clocks to more

use cases, both for consumers and for various health-care applica-

tions, such as identifying fast-aging patients to prescribe disease-

preventive medications or triaging slow-aging patients who are most

likely to benefit from surgery (Safaee et al., 2023). Finally, epigene-

tic clocks have proven useful in helping forensic scientists estimate

the chronological age of suspects using oral- or blood-based tissue

(Simpson & Chandra, 2021).

In research settings, oral-based tissue estimates of epigenetic

clocks should (at minimum) be highly correlated with blood-based

estimates (i.e., the rank order of estimates should be highly simi-

lar). High correlations between tissue-type estimates of epigenetic

clocks enable the accurate testing of associations between estimates

and phenotypes of interest. In contrast to research settings, com-

mercial companies offering epigenetic clock estimates to customers

and epigenetic clock applications in forensics need oral-based and

blood-based tissue test results to agree absolutely. An oral-based

clock estimate that incorrectly reports an individual to be epigeneti-

cally older or aging faster than expected is not a useful product for

companies or a useful tool for forensic scientists.

indicating its unique ability to estimate chronological age in oral- and blood-based tis-

sues. Our findings indicate that application of blood-derived epigenetic clocks in oral-

based tissues may not yield comparable estimates of epigenetic age, highlighting the

need for careful consideration of tissue type when estimating epigenetic age.

K E Y WO RD S
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Here, we tested the within-person comparability of epigenetic

clocks across five tissue types collected in two cohort studies: buccal

epithelial, saliva, dry blood spots (DBS), buffy coat (i.e., leukocytes),

and PBMCs. Aiming to assess a wide range of clocks, we compared

first-generation clocks: Horvath pan-tissue (Horvath, 2013) and

Hannum clocks (Hannum et al., 2013), second-generation clocks:

PhenoAge (Levine et al., 2018) and GrimAge2 (Lu et al., 2022), and

the DunedinPACE (Belsky et al., 2022). Additionally, we compared

tissue estimates of the Skin and Blood clock (Horvath et al., 2018),

due to having both blood- and oral-based tissues, and the PedBE

clock (McEwen et al., 2020), which was constructed using buc-

cal DNA in pediatric samples. We hypothesized that estimates

of the Horvath pan-tissue clock would be similar across tissues

(Horvath, 2013), while clocks trained on a single type of tissue

would differ across tissue types.

2 | MATERIALS AND METHODS

2.1 | Participants and design

Study participants were recruited from the Pennsylvania State

University (PSU) community and surrounding areas, with some

children recruited from other regions within Pennsylvania, as

described in more detail below. Tissue samples were initially col-

lected for cross-tissue comparisons of telomere length measure-

ments (Wolf et al., 2024). Here, we used leftover tissue samples

for cross-tissue comparisons of epigenetic clocks within individu-

als. This study and protocols were approved by PSU's Institutional

Review Board.

2.1.1 | Adults

Adult participants were recruited via advertisements located

on PSU's University Park campus and in community bulletins in

the surrounding areas. Approval from PSU's Institutional Review

Board was granted (protocol STUDY00008478), and all partici-

pants provided written informed consent. Inclusion criteria for

the study included: (a) ages 18–75, (b) no significant medical ill-

ness or immune disease (e.g., cancer, diabetes, or autoimmune

disease), (c) current non-smoker, and (d) not pregnant or currently

breastfeeding. Individuals were excluded if they self-reported a

recent infection, illness, and/or use of antibiotics. The maximum

age was restricted to 75years due to mortality selection (Cawthon

et al., 2003). To balance across ages and sex, eligibility became

more restricted as sampling progressed. Seventy-seven adults

were recruited in total, and the present investigation included the

subset of 47 individuals who had at least two of the following tis-

sues available: buccal, saliva, DBS, and PBMC. Age (t(68)=1.31;

p=0.19), sex (χ2(1)=0.16; p=0.69), and race (χ2(2)=0.53; p=0.77)

were not significantly different between participants whose sam-

ples were included versus excluded.

After obtaining informed consent, tissue samples and demo-

graphic information were collected from adult participants at

PSU's Clinical Research Center (CRC). Participants completed a set

of questionnaires to collect demographic and health-related infor-

mation. Trained phlebotomists performed antecubital venipunc-

ture to collect 20mL of whole blood in ethylenediaminetetraacetic

acid (EDTA) tubes. PBMCs were isolated from these whole blood

samples through density-gradient centrifugation using Ficoll.

Approximately 200μL of whole blood were applied to a Whatman

903 protein saver card for the DBS samples. Participants were

also asked to provide 4mL of saliva across two Oragene tubes

(OGR-500, DNA Genotek), which upon completion was mixed with

Oragene stabilizing buffer and sealed. Eight buccal samples were

collected using Isohelix SK1 swabs to firmly scrape the inside of

the cheek per manufacturer's directions. Collection order for all

tissue types was uniform across participants. Participants were

asked to refrain from eating or drinking anything other than water

for 1h before arriving at the CRC. After collection, tissue samples

were stored as follows: PBMCs were stored at −80°C in a solu-

tion buffer composed of phosphate buffered saline pH7.2+EDTA

(2mMol)+bovine serum albumin (0.5%) prior to DNA extraction.

DBS were stored in sealed Ziploc bags with desiccant packets at

room temperature. Buccal swabs were placed in sealed Ziploc bags

and stored at −80°C. Saliva samples were aliquoted into 4 cryovials

and stored at −80°C.

2.1.2 | Children

Child participants were members of the Child Health Study (CHS),

a large cohort study designed to provide prospective, longitudinal

data on the health and development of children with and without a

history of child maltreatment investigations (for more details about

the CHS see Schreier et al., 2021). Approval from PSU's Institutional

Review Board was granted (protocol STUDY00006550), and

informed assent (child) and consent (caregiver) were obtained for all

participants. The CHS is actively following a cohort of 700 children,

and the present investigation included a randomsubset of 36 children

who had at least two of the following tissues available: buccal, saliva,

DBS, and buffy coat. Age was significantly higher in the included

samples (t(42)=3.37; p=0.002), but both sex (χ2(3)=2.93; p=0.40)

and race (χ2(5)=4.21; p=0.52) were not significantly different

between included and excluded samples.

Caregivers accompanied children to PSU's University Park

campus. Tissue samples were collected from the child participants,

and their caregivers provided information on child health and de-

mographics. Subsequently, trained phlebotomists collected 20mL

of whole blood in EDTA tubes via antecubital venipuncture from

youth. Buffy coat was isolated using centrifugation to separate

plasma followed by treatment with 0.5x red blood cell lysis buf-

fer (Invitrogen). Using identical procedures to those described in

adults, approximately 200μL of whole blood were used to collect

a DBS sample on a Whatman 903 protein saver card; 2mL of saliva
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(Oragene OGR-500, DNA Genotek) and two buccal swabs (Isohelix

SK1) were also taken per individual. DBS, saliva, and buccal swabs

were stored in the same conditions as adult samples, and buffy

coat was stored at −80°C in a solution buffer composed of phos-

phate buffered saline pH7.2+EDTA (2mM)+bovine serum albu-

min (0.5%).

2.1.3 | Demographic measures

Chronological age, biological sex, and race/ethnicity measurements

were collected. All demographic variables were measured via

self-report.

2.2 | DNA extraction

To minimize the impact of DNA extraction procedures, DNA was

extracted from all tissue samples using the Gentra Puregene DNA

Extraction Kit according to factory guidelines (Qiagen). This kit has

been used to extract DNA from whole blood, PBMCs, saliva, buccal

cells, and DBS (Koontz et al., 2015). Extracted DNA was stored at

−80°C in Qiagen DNA Hydration Solution.

2.3 | DNA methylation measurements

DNA (N=83 individuals, N=296 total samples) was delivered to

PSU's Genomics Core Facility for bisulfite conversion, processing,

and methylation measurements. All bisulfite conversions, DNA

processing, and array hybridization steps were performed by the

same technician to decrease technical variability. The Infinium

MethylationEPIC v2.0 BeadChip Kit was used to measure DNA

methylation in over 935,000 CpG sites across the genome, and four

array plates were used in total (N1=96;N2=96;N3=96;N4=8). IDAT

files were read into R statistical software using the read.metharray.

exp function in the minfi package. A total of 12 tissue samples (10

saliva and 2 buffy coat) across 11 individuals with probe detection

p-values greater than 0.05 for more than 5% of probes or with bi-

sulfite conversion rates of less than 80% were excluded from down-

stream analyses leaving 284 tissue samples from 83 individuals. CpG

probes with a bead count of less than three in 5% or more samples or

with an average detection p-value of >0.05 across all samples were

excluded (# of probes excluded=8419). Prior to calculation of epi-

genetic clocks, all samples were normalized using the beta-mixture

quantile normalization (BMIQ) method.

2.4 | CpG probe imputation

All clocks included in our downstream analyses contained CpG

probes that are not present on the Infinium MethylationEPIC v2.0

BeadChip Array (Kaur et al., 2023). The number of probes present

for each clock is shown in Table S1. Missing probes were imputed

using custom “golden standard” datasets constructed for each tissue

type and age (1%–18% imputation per clock). For further information

on imputation methods, see Appendix S1 and Table S2.

2.5 | Epigenetic clock estimates

Horvath pan-tissue, Hannum, PhenoAge, GrimAge2, DunedinPACE,

Skin and Blood, and PedBE estimates were calculated manually using

modified code from both the methylCIPHER and the DunedinPACE

packages (Belsky et al., 2022) in R. To perform sensitivity analyses,

principal component (PC) clock measurements of the Horvath pan-

tissue, Hannum, PhenoAge, GrimAge, and Skin and Blood clocks

were computed manually using source code provided by the authors

of these clocks (Higgins-Chen et al., 2022). Due to the robustness

of PC clocks to missing probes, no imputation was performed

on missing CpG sites when computing these clocks. Epigenetic

age acceleration measurements were computed for each clock

(excluding DunedinPACE) as the difference between epigenetic age

and chronological age in years.

2.6 | Estimation of cellular composition of
each tissue

Cellular compositions for buccal and saliva tissues were estimated

using methods described by Houseman et al. (2016). Briefly, a

reference-free cellular decomposition method was applied sepa-

rately to all buccal and saliva samples. In order to determine the

number of cell subtypes that should be used for each tissue, the

top 10,000 most variable probes across all samples were extracted

separately from buccal and saliva tissue. Next, for estimates of

1–15 cell subtypes for buccal and saliva tissues, a deviance statis-

tic was calculated for 1000 bootstrapped samples. The number of

cell subtypes was chosen to minimize the quantile-trimmed mean

deviance statistics for both buccal and saliva, with buccal having

three cellular subtypes and saliva having five cellular subtypes

(see Figure S1).

DBS, buffy coat, and PBMC cellular subtype compositions

were estimated using DNAm estimates of immune cell proportions

(Houseman et al., 2012). DBS and buffy coat cellular estimates in-

cluded CD4T, CD8T, natural killer, B-cell, monocyte, and granulo-

cyte estimates. PBMC cellular estimates included CD4T, CD8T,

natural killer, B-cell, and monocyte estimates.

2.7 | Statistical analyses

Statistical analyses were performed using R Studio v.2023.06.2 (R

4.3.1). Epigenetic clock estimates were stratified by tissue (buccal,

saliva, DBS, buffy coat, and PBMC) and displayed with violin plots

using ggplot2. Within-person Pearson bivariate correlations for all
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clock acceleration values were calculated for all tissue pairs and

displayed in correlation heatmaps using corrplot. Within-person dif-

ferences between clock estimates were calculated using a paired t

test for each tissue pair. Intraclass correlation coefficients (ICCs)

were computed across all tissues using the ICC function in the psych

package.

We conducted two sensitivity analyses. First, as DNAm mea-

surements at many CpG sites exhibit technical variability, and these

CpG sites are included in common epigenetic clock algorithms,

using PC clocks is a viable option to reduce the effects of techni-

cal variability (Higgins-Chen et al., 2022). Therefore, we computed

PC epigenetic clock estimates for the Horvath pan-tissue, Hannum,

PhenoAge, GrimAge, and Skin and Blood clocks and analyzed

within-person differences between PC estimates for each set of tis-

sues using paired t tests (the PedBE and DunedinPACE clocks were

not included in this analysis since they do not have PC versions).

Secondly, we computed within-person partial Pearson correlations

for all clock acceleration values across tissues, controlling for cel-

lular compositions of tissues (see Section 2.6) and DNAm batch.

This was done to determine whether cellular composition of tissues

and DNAm batch altered the correlations between epigenetic age

accelerations. DNAm batch residualization was performed using

principal components of control-probe beta values on the Infinium

MethylationEPIC v2.0 BeadChip Array (Lehne et al., 2015). Because

all comparisons were made within-person, sex, and race/ethnicity

were not included as covariates.

3 | RESULTS

3.1 | Descriptive statistics

Our analytical sample consisted of 83 individuals across two

studies with a total of 284 tissue samples (NBuccal=81; NSaliva=59;

NDBS=64; NBuffyCoat=35; NPBMC=45). Most individuals had within-

person measurements for at least three tissue types with over half

of individuals having four tissue types (N2-Tissue=8; N3-Tissue=32;

N4-Tissue=43). Two tissue types differed between cohorts (i.e., buffy

coat was collected only in children, and PBMCs were collected

only in adults). Demographic statistics for the sample, stratified by

cohort, are shown in Table 1.

3.2 | Comparability of standard first-generation
epigenetic clocks across tissues

First-generation epigenetic clock estimates varied across tissues.

Moreover, the directionality of differences between tissues was not

maintained between the Horvath pan-tissue and Hannum epige-

netic age clocks.

Mean Horvath pan-tissue epigenetic age estimates were

highest for saliva samples (43.44±21.59) and lowest for buc-

cal (32.08±20.67) (Figure 1a). As expected, mean values of

Horvath pan-tissue ages for buffy coat (23.05±4.48) and PBMCs

(53.74±16.87) were different due to the restricted age ranges of

samples with each tissue type. For Horvath pan-tissue age accelera-

tionmeasurements, positivemean valueswere observed in all tissues

(buccal=1.60±4.39; saliva=11.15±7.38; DBS=13.11±4.07; buffy

coat=11.21±3.81; PBMCs=9.99±4.95), indicating higher epigene-

tic age estimates than chronological age (Figure 1b). Within-person

correlations of Horvath pan-tissue age acceleration measurements

were strongest for DBS and buffy coat (r=0.74) and weakest for sa-

liva and PBMC (r=0.00) (Figure 1c).

Hannum age estimates were highest for buccal (41.76±15.18)

and saliva samples (41.16±15.46), whereas DBS exhibited a lower

mean value (14.46±18.36) (Figure 1d). As expected, mean values

of Hannum age for adult PBMCs (24.27±15.12) were higher than

for child buffy coat samples (−1.73±3.88), the latter of which were

registered as having negative epigenetic age in most samples. For

Hannum age acceleration estimates, positive values were observed

in buccal (11.27±7.77) and saliva (8.87±12.88) tissues, whereas

negative values were observed in DBS (−13.56±4.52), buffy coat

(−13.64±3.39), and PBMCs (−19.47±5.57), indicating higher epigen-

etic age estimates than chronological age in buccal and saliva and

lower epigenetic age estimates than chronological age in DBS, buffy

coat, and PBMCs (Figure 1e). Within-person correlations of Hannum

age acceleration measurements were strongest for DBS and PBMCs

(r=0.75) and weakest for buccal and buffy coat (r=0.05) (Figure 1f).

Results of first-generation epigenetic clocks across all tissue

types stratified by age are provided in Figures S2 and S3. ICCs across

TABLE 1 Descriptive statistics of sample stratified by age.

Children
(n=36) Adults (n=47) Total (n=83)

Mean (SD)/min–max/N (%)

Age (years) 11.94
(1.23)

44.27 (16.56) 30.25 (20.35)

Age range (years) 9.40–13.94 19.20–70.21 9.40–70.21

Sex

Male 13 (36.1%) 20 (42.6%) 33 (39.8%)

Female 23 (63.9%) 27 (57.5%) 50 (60.2%)

Race

White 24 (66.7%) 41 (87.2%) 65 (78.3%)

Black 3 (8.3%) 1 (2.1%) 4 (4.8%)

Other 9 (25.0%) 4 (8.5%) 13 (15.7%)

Tissue

Buccal 35 (97.2%) 46 (97.9%) 81 (97.6%)

Saliva 22 (61.1%) 37 (78.7%) 59 (71.1%)

DBS 29 (80.6%) 35 (74.5%) 64 (77.1%)

Buffy coat 35 (97.2%) 0 (0.00%) 35 (42.2%)

PBMC 0 (0.0%) 45 (95.8%) 45 (54.2%)

Note: Tissue percentages are given as the percentage of samples within
the specified age range that had tissue measurements. Buffy coat and
PBMC tissue were only collected in children and adults, respectively.
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all tissues for both Horvath pan-tissue and Hannum estimates are

detailed in Table S3.

3.3 | Comparability of Skin and Blood and PedBE
epigenetic clocks across tissues

Skin and Blood clock age estimations were less variable across tis-

sues. Even so, saliva (32.09±20.80) and buccal (28.65±20.32) esti-

mates tended to be higher than estimates from DBS (25.39±19.46)

(Figure 2a). As expected, mean values of buffy coat (8.96±1.42)

and PBMCs (40.48±16.25) Skin and Blood age were different due

to the restricted age ranges of participants who provided samples

with each tissue type. For Skin and Blood age acceleration measure-

ments, all tissues exhibited negative values (buccal=−1.84±3.41;

saliva=−0.21±6.2; DBS=−2.63±2.36; buffy coat=−2.92±1.25;

PBMCs=−3.26±3.53) (Figure 2b). Within-person correlations of

Skin and Blood acceleration measurements were strongest for

DBS and buffy coat (r=0.68) and weakest for saliva and buffy coat

(r=−0.11) (Figure 2c).

PedBE age estimates were derived within child samples

only. Buccal and saliva tissues exhibited higher mean values

(buccal=12.89±1.77; saliva=9.32±1.69), whereas estimates from

DBS and buffy coat tissues were lower and in close alignment with one

another (DBS=7.07±0.55; buffy coat=7.03±0.48) (Figure 2d). PedBE

acceleration estimates were positive for buccal (0.97±1.25) but were

negative for all other tissues (saliva=−2.86±1.63; DBS=−4.97±1.12;

buffy coat=−4.89±1.16) (Figure 2e). Within-person correlations of

PedBE acceleration measurements were strongest for DBS and buffy

coat (r=0.95) and weakest for buccal and saliva (r=−0.01) (Figure 2f).

Skin and Blood and clock measurements across all tissue types

stratified by study cohort are shown in Figures S4 and S5. ICCs

across all tissues for both Skin and Blood and PedBE estimates are

detailed in Table S4.

3.4 | Comparability of second-generation
epigenetic clocks across tissues

Second-generation epigenetic clock estimates also varied across tis-

sues; however, the directionality of differences was more consistent

than was observed for first-generation clocks.

PhenoAge estimates for buccal (43.94±18.85) and saliva

(50.31±22.98) had the highest mean values, whereas DBS had the

F IGURE 1 First generation epigenetic clock distributions and correlations. (a) Horvath pan-tissue epigenetic age estimates for buccal
(32.08±20.67), saliva (43.44±21.59), DBS (41.13±20.12), buffy coat (23.05±4.48), and PBMCs (53.74±16.87), (b) Horvath pan-tissue
epigenetic age acceleration estimates for buccal (1.60±4.39), saliva (11.15±7.38), DBS (13.11±4.07), buffy coat (11.21±3.81), and PBMCs
(9.99±4.95), (c) within-person correlations of Horvath pan-tissue epigenetic age acceleration across tissues, (d) Hannum epigenetic age
estimates for buccal (41.76±15.18), saliva (41.16±15.46), DBS (14.46±18.36), buffy coat (−1.73±3.88), and PBMCs (24.27±15.12), (e)
Hannum epigenetic age acceleration estimates for buccal (11.27±7.77), saliva (8.87±12.88), DBS (−13.56±4.52), buffy coat (−13.64±3.39),
and PBMCs (19.47±5.57), and (f) within-person correlations of Hannum epigenetic age acceleration across tissues. Age and age acceleration
estimates are indicated as mean±standard deviation. Vertical dashed lines in (a), (b), (d), and (e) separate tissues measured in both adults and
children (buccal, saliva, and DBS) and tissues measured in either adults (PBMCs) or children (buffy coat). Thick black horizontal bars on violin
plots indicate the tissue-stratified median clock value and colored boxes indicate interquartile ranges. * indicates correlations with p<0.05.

(a)

(d) (e)

(b) (c)

(f)
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lowest (21.70±22.17) (Figure 3a). As expected, mean values of buffy

coat (3.43±5.74) and PBMCs (29.03±18.91) PhenoAge measure-

ments were different due to the restricted age ranges of participants

who provided samples with each tissue type. We observed nega-

tive mean values for PhenoAge acceleration measurements in DBS

(−6.31±5.98), buffy coat (−8.48±5.30), and PBMCs (−14.72±6.68),

and positive values in both buccal (13.45±6.19) and saliva

(18.01±12.27) (Figure 3b). Within-person correlations of PhenoAge

acceleration measurements were strongest for DBS and buffy coat

(r=0.75) and weakest for buccal and DBS (r=0.05) (Figure 3c).

GrimAge2 estimates were also highest for buccal and saliva

(buccal=71.68±15.36; saliva=59.17±15.27) and lower for DBS

(34.69±14.50) (Figure 3d). GrimAge2 estimates of child buffy coat

samples were higher than expected (23.10±3.84) but were still well

below estimates of adult PBMCs (42.01±12.73), in line with the

restricted age ranges of participants who provided samples with

each tissue type. GrimAge2 acceleration estimates showed higher

mean values for buccal (41.19±8.10) and saliva (26.88±13.36) tis-

sues, and lower mean values for DBS (6.67±5.73) and buffy coat

(11.19±3.41). Adult PBMCs were the only tissue to exhibit nega-

tive GrimAge2 acceleration estimates (−1.74±6.15) (Figure 3e).

Within-person correlations of GrimAge2 acceleration measure-

ments were strongest for DBS and PBMCs (r=0.86) and weakest for

buccal and buffy coat (r=0.03) (Figure 3f).

For second-generation epigenetic clocks across all tissue types,

stratified by age, see Figures S6 and S7. ICCs across all tissues for

both PhenoAge and GrimAge2 estimates are detailed in Table S5.

3.5 | Comparability of DunedinPACE epigenetic
clock across tissues

DunedinPACE estimates varied, with buccal and saliva exhibiting

the highest rate of epigenetic pace of aging (buccal=1.61±0.08; sa-

liva=1.50±0.25) and DBS (0.96±0.09), buffy coat (0.96±0.09), and

PBMCs (0.89±0.10) all exhibiting lower rates (Figure 4a). Within-

person correlations of DunedinPACE measurements (Figure 4b)

were strongest for DBS and buffy coat (r=0.72) and weakest for

saliva and PBMC (r=0.15).

For DunedinPACE estimates across all tissue types, stratified by

age, see Figures S8 and S9. ICCs across all tissues for DunedinPACE

estimates are detailed in Table S6.

F IGURE 2 Skin and Blood and PedBE clock distributions and correlations. (a) Skin and Blood epigenetic age estimates for buccal
(28.65±20.32), saliva (32.09±20.80), DBS (25.39±19.46), buffy coat (8.96±1.42), and PBMCs (40.48±16.25), (b) Skin and Blood
epigenetic age acceleration estimates for buccal (−1.84±3.41), saliva (−0.21±6.20), DBS (−2.63±2.36), buffy coat (−2.92±1.25), and
PBMCs (−3.26±3.53), (c) within-person correlations of Skin and Blood epigenetic age acceleration across tissues, (d) PedBE epigenetic age
estimates for buccal (12.89±1.77), saliva (9.32±1.69), DBS (7.07±0.55), and buffy coat (7.03±0.48), (e) PedBE epigenetic age acceleration
estimates for buccal (0.97±1.25), saliva (−2.86±1.63), DBS (−4.97±1.12), and buffy coat (−4.89±1.16), and (f) within-person correlations of
PedBE epigenetic age acceleration across tissues. Age and age acceleration estimates are indicated as mean±standard deviation. Vertical
dashed lines in (a and b) separate tissues measured in both adults and children (buccal, saliva, and DBS) and tissues measured in either adults
(PBMCs) or children (buffy coat). Thick black horizontal bars on violin plots indicate the tissue-stratified median clock value and colored
boxes indicate interquartile ranges. * indicates correlations with p<0.05.

(a)

(d) (e) (f)

(b) (c)
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3.6 | Pairwise within-person comparisons of
epigenetic clock estimates

Within-person differences in epigenetic clock estimates were most

pronounced between oral and blood-based tissues. All within-

person clock estimates, other than Horvath pan-tissue, were sig-

nificantly higher in buccal and saliva than in blood-based tissues (i.e.,

DBS, PBMCs, buffy coat; differences ranging from 0.84 for Skin and

Blood to 40.25 for GrimAge2; see Table 2). In contrast, Horvath pan-

tissue clock estimates for buccal tissue were lower than estimates

for all blood tissues (differences ranging from -8.12 to -11.09years),

and differences between saliva and blood tissues were not signifi-

cant (differences ranging from −1.88 to 2.22years).

Although Hannum estimates were similar between buccal and

saliva, estimates of all other epigenetic clocks exhibited varying

degrees of concordance, with buccal having higher estimates than

saliva in GrimAge2 (13.47±1.21) and PedBE (3.89±0.46) clocks,

and lower estimates than saliva in Horvath pan-tissue (9.45±0.94),

PhenoAge (5.33±1.48), and Skin and Blood (1.91±0.81) clocks.

Buccal tissues also displayed faster rates of aging than saliva using

the DunedinPACE epigenetic clock (0.10±0.03). No significant

differences between DBS and buffy coat were observed for any

clock. In contrast, in all clocks tested, DBS had higher clock esti-

mates when compared to PBMCs (differences ranging from 0.86 to

11.23), although these differences did not reach statistical signifi-

cance for the Skin and Blood clock. No comparisons were made be-

tween buffy coat and PBMCs because these samples were obtained

from two different studies. Age-stratified tissue comparisons are

reported in Tables S7 and S8.

3.7 | Sensitivity analyses – PC clocks and
controlling for cellular composition and DNA
methylation batch

To ensure results from the standard versions of epigenetic clocks

were accurate and reproducible, we performed within-person,

between-tissue comparisons of epigenetic age estimates of the

PC versions of all available epigenetic clocks. Although values for

within-person, between-tissue comparisons were different for

standard and PC clocks (compare Table 2 and Table S9), the direc-

tion of effects and significance levels of PC clocks for most tissues

F IGURE 3 Second generation epigenetic clock distributions and correlations. (a) PhenoAge epigenetic age estimates for buccal
(43.94±18.85), saliva (50.31±22.98), DBS (21.70±22.17), buffy coat (3.43±5.74), and PBMCs (29.03±18.91), (b) PhenoAge epigenetic
age acceleration estimates for buccal (13.45±6.19), saliva (18.01±12.27), DBS (−6.31±5.98), buffy coat (−8.48±5.30), and PBMCs
(−14.72±6.68), (c) within-person correlations of PhenoAge epigenetic age acceleration across tissues, (d) GrimAge2 epigenetic age estimates
for buccal (71.68±15.36), saliva (59.17±15.27), DBS (34.69±14.50), buffy coat (23.10±3.84), and PBMCs (42.01±12.73), (e) GrimAge2
epigenetic age acceleration estimates for buccal (41.19±8.10), saliva (26.88±13.36), DBS (6.67±5.73), buffy coat (11.19±3.41), and PBMCs
(−1.74±6.15), and (f) within-person correlations of GrimAge2 epigenetic age acceleration across tissues. Age and age acceleration estimates
are indicated as mean±standard deviation. Vertical dashed lines in (a), (b), (d), and (e) separate tissues measured in both adults and children
(buccal, saliva, and DBS) and tissues measured in either adults (PBMCs) or children (buffy coat). Thick black horizontal bars on violin plots
indicate the tissue-stratified median clock value and colored boxes indicate interquartile ranges. * indicates correlations with p<0.05.

(a)

(d) (e) (f)

(b) (c)
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and clocks remained comparable to the effects observed when

using standard clocks. Comparisons between standard and PC clock

estimates within-person and within-tissue are shown in Table S10.

Violin plots of PC clock estimates (full sample and age-stratified) are

shown in Figures S10–S18.

To estimate the effect of cellular composition and DNAm

batch, we residualized epigenetic age acceleration values by both

factors to determine whether cellular composition or batch in-

fluenced epigenetic age acceleration correlations. Overall, when

controlling for cell composition and DNAm batch, correlations de-

creased by an average of Δr=−0.04. Notable improvements were

observed in Skin and Blood clock saliva-buffy coat correlations

(r=−0.11 to r=0.25) and Skin and Blood saliva-PBMC correla-

tions (r=−0.01 to 0.15) (Figure 5). Additionally, between-tissue

correlations were generally higher when controlling for only batch

effects compared to controlling for only cell composition effects

(Figures S19 and S20).

4 | DISCUSSION

We found significant within-person differences in epigenetic clock

estimates across most tissues. The largest differences were ob-

served when comparing oral-based versus blood-based tissues

(i.e., buccal vs. DBS); however, differences within oral-based (i.e.,

buccal vs. saliva) and blood-based (i.e., DBS vs. PBMCs) were ob-

served in some clocks. Depending on the clock, buccal and saliva

varied significantly in epigenetic age estimates in both magnitude

and direction. DBS and buffy coat showed no significant differences

in age estimates in all clocks tested. Conversely, DBS and PBMCs

displayed significant differences in every clock except the Skin and

Blood clock, with DBS having older epigenetic age estimates than

PBMCs. As expected, the Horvath pan-tissue clock showed no sig-

nificant differences in saliva-DBS and saliva-buffy coat estimates,

whereas all other clocks showed significant differences in these

comparisons. The Horvath pan-tissue clock did, however, exhibit

significant differences between saliva and PBMC, with saliva having

higher age estimates. Of particular note was the ability of the Skin

and Blood clock to similarly estimate chronological age across both

oral- and blood-based tissues. These findings suggest that the Skin

and Blood clock can be used when saliva or buccal tissue is available

since it produces similar age estimates for both children and adult

cohorts across tissue type. These results were generally consistent

when using PC clocks or when controlling for cellular composition

and DNAm batch.

Our findings are in line with previous research comparing

cross-tissue concordances of epigenetic clocks. A worldwide meta-

analysis of epigenetic age acceleration using Horvath pan-tissue,

Hannum, PhenoAge, and GrimAge2 reported average acceler-

ation values for buccal (27.5years), saliva (8.6years), and blood

(0.5years) tissues, indicating comparable acceleration in age esti-

mates for oral- relative to blood-based tissues, as reported here.

However, these results should be interpreted with caution because

comparisons were made both between-tissue and between-person

F IGURE 4 DunedinPACE epigenetic clock distributions and correlations. (a) DunedinPACE estimates for buccal (1.61±0.08), saliva
(1.50±0.25), DBS (0.96±0.09), buffy coat (0.96±0.09), and PBMCs (0.89±0.10), (b) within-person correlations of DunedinPACE across
tissues. Pace of aging estimates are indicated as mean±standard deviation. Vertical dashed lines in (a) separate tissues measured in both
adults and children (buccal, saliva and DBS) and tissues measured in either adults (PBMCs) or children (buffy coat). Thick black horizontal
bars on violin plots indicate the tissue-stratified median clock value and colored boxes indicate interquartile ranges. * indicates correlations
with p<0.05.

(a) (b)
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(Yusipov et al., 2024). A study using pediatric clocks found blood-

based tissue correlations ranging between 0.38 and 0.44, though

again, these comparisons were made across different pediatric

clocks each calculated in their corresponding tissue (i.e., Knight

clock in cord blood and Lee clock in placenta), obscuring inference

about tissue-specific effects (Fang et al., 2023). Another study of

21 adults reported within-person correlations between saliva and

blood DunedinPoAm (a previous version of DunedinPACE) mea-

surements of 0.60 (all samples) and 0.85 (samples from the same

batch) (Raffington et al., 2021). Overall, our results are similar to

previous work on the comparability of epigenetic clock estimates

across tissues. Here, we extended prior work by providing within-

person comparisons of epigenetic clocks across commonly col-

lected tissues in individuals aged 9–70years.

Our findings are also comparable to prior research investigating

cross-tissue alignment of alternative genomic measures of biolog-

ical aging. Our previous work, conducted within this same sample,

observed similarly increased biological age, via shorter telomere

length (TL), in buccal and saliva relative to blood-based tissues

(Wolf et al., 2024). Similar findings were reported in a large-scale

meta-analysis, observing stronger correlations between TL among

related tissues, for example, blood-based tissues (McLester-Davis

et al., 2023). Previous work has further demonstrated significant dif-

ferences in quality metrics of DNA across different tissues (Hansen

et al., 2007; Lucena-Aguilar et al., 2016; Wolf et al., 2024); however,

it remains uncertain to what degree variation in the integrity, purity,

and quantity of extracted DNA may influence the reliability of data

generated on the EPIC array.

We acknowledge several limitations. First, buffy coat was only

collected in children, and PBMCs were only collected in adults,

limiting comparability of these tissues to selected age ranges.

Second, the EPIC v2 DNAm array was used for data collection of

all tissue samples. This is the most recent version of the Illumina

Infinium arrays and, as it is relatively new, no clocks investi-

gated here were constructed using this array. Though the EPIC

v2 array does not contain every probe used in the current epi-

genetic clock algorithms (see Table S1), recent work has shown

the EPIC v1 and EPIC v2 arrays to be highly comparable (Kaur

et al., 2023). To increase comparability, imputations for missing

probes were made over the entire sample (see Section 2.4 and

Appendix S1) (Sugden, 2023). Third, tissue samples of children in-

cluded in the current study were collected from a high-risk pediat-

ric cohort (Schreier et al., 2021) following youth with and without

recent investigations for suspected child maltreatment exposure.

Although child maltreatment has been shown to alter global and

specific gene DNAm levels (Parade et al., 2021), past work with

a subset of this cohort has shown that child maltreatment is not

associated with changes in epigenetic clock measurements (Etzel

et al., 2022), thereby reducing the chance that differences in child

maltreatment exposure had an effect on our results. Fourth, spe-

cific algorithms such as the Hannum, PhenoAge, GrimAge2, and

DunedinPACE clocks were trained using only data from adult sam-

ples. As such, our findings of adult-trained clocks should be takenT
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with caution when applied to the current sample of children. Fifth,

although we hypothesized that the Horvath Pan-Tissue clock

would perform similarly across tissue types, we did not observe

this trend. The Horvath Pan-Tissue clock (Horvath, 2013) was

trained on buccal, saliva, and blood tissues and across various age

ranges. While blood and buccal tissue training data included chil-

dren samples ranging from 0 to 18years old, saliva training data

included only adult samples greater than 20years old. We believe

that the lack of saliva children samples in the Horvath Pan-Tissue

training data may account for some of the differences in epigen-

etic age estimates we observed across tissues. Sixth, all clocks

used in our analyses were constructed using both age correlated

and non-age-correlated CpG sites. Recent work (Dabrowski

et al., 2024) has demonstrated that including non-age-correlated

CpGs in epigenetic clock algorithms can reduce the amount of de-

tectable biological variability. Methods to overcome these inher-

ent biases of epigenetic clocks have been developed using cellular

dynamics, and the application of these methods could improve the

comparability of within-person, between-tissue epigenetic age

measurements (Dabrowski et al., 2024). Seventh, previous work

has demonstrated that variations in the leukocyte composition of

oral-based tissues change with age (Theda et al., 2018). The effects

of age on cellular composition were not accounted for in our main

analyses, and therefore could contribute to some of the observed

differences in within-person correlations observed between

oral- and blood-based tissues. Finally, correlations within-person

and between-tissue clock estimates are only informative if DNAm

measurements are technically reliable. While previous work on the

reliability of DNAm measurements has been reported in blood-

based samples (Sugden et al., 2020), the reliability of DNAm mea-

surements of oral-based tissues is less understood. However, one

study found high intraclass correlation coefficients (>0.73) be-
tween 24 technical replicates of buccal tissue for various epigen-

etic clocks (Raffington et al., 2023), but further work is needed to

determine the reliability of DNAm measurements in these tissues.

Therefore, correlations between blood-based and oral-based tis-

sue clock estimates could be limited by the reliability of oral-based

DNAm measurements.

Our study suggests that epigenetic clocks can bemost reliably ap-

plied within the tissue(s) used to generate each clock. Caution should

be taken both in research and commercial settings to ensure proper

tissue samples are collected for the intended epigenetic clocks. Both

research and commercial efforts of measuring biological age using

epigenetic clocks may exhibit inaccurate age estimates if incorrect

tissues are used. In addition, we recommend the construction and

utilization of epigenetic clocks trained on oral-based tissues, thereby

enabling the reliable and sensitive estimates of epigenetic age in less

invasive tissue types. Overall, our work suggests that tissue type

plays an important role in the estimation of biological age and should

be carefully considered when using epigenetic clocks.

F IGURE 5 Within-person epigenetic age acceleration correlations across tissues controlling for cellular composition and DNAm batch.
(a) Horvath-pan tissue, (b) Hannum, (c) Skin and Blood, (d) PedBE (children only), (e) PhenoAge, (f) GrimAge2, and (g) DunedinPACE. For all
clocks, within-person correlations were residualized for tissue cellular composition and DNA methylation batch. * indicate correlations with
p<0.05.
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