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People who experience trauma and develop posttraumatic stress disorder (PTSD) are at increased risk for poor health. One
mechanism that could explain this risk is accelerated biological aging, which is associated with the accumulation of chronic
diseases, disability, and premature mortality. Using data from 2309 post-9/11 United States military veterans who participated in
the VISN 6 MIRECC’s Post-Deployment Mental Health Study, we tested whether PTSD and trauma exposure were associated with
accelerated rate of biological aging, assessed using a validated DNA methylation (DNAm) measure of epigenetic aging—
DunedinPACE. Veterans with current PTSD were aging faster than those who did not have current PTSD, B =0.18, 95% CI [0.11,
0.27], p < .001. This effect represented an additional 0.4 months of biological aging each year. Veterans were also aging faster if they
reported more PTSD symptoms, 3 = 0.13, 95% Cl [0.09, 0.16], p < 0.001, or higher levels of trauma exposure, 3 = 0.09, 95% Cl [0.05,
0.13], p < 0.001. Notably, veterans with past PTSD were aging more slowly than those with current PTSD, B =-0.21, 95% Cl [-0.35,
-0.07], p = .003. All reported results accounted for age, gender, self-reported race/ethnicity, and education, and remained when
controlling for smoking. Our findings suggest that an accelerated rate of biological aging could help explain how PTSD contributes
to poor health and highlights the potential benefits of providing efficacious treatment to populations at increased risk of trauma

and PTSD.
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INTRODUCTION

Posttraumatic stress disorder (PTSD) is a common [1, 2] and costly
[3, 4] mental health disorder that is linked to poorer health [5-7],
including greater risk of chronic disease [5, 6], disability [8], and
premature death [7]. Despite well-established epidemiological
evidence linking PTSD to poor health, it is unclear what explains
these health consequences [9-11]. It is critical to determine how
PTSD might lead to poorer health to facilitate future interventions
that might mitigate the health consequences of PTSD [10]. This is
particularly true for populations at greater risk of developing PTSD,
such as first responders and military veterans [12-14], who might
benefit the most from such interventions.

A number of plausible physiological mechanisms have been
theorized to explain the causal pathway from PTSD to poor health.
Prior empirical work has shown PTSD can disrupt immune,
endocrine, and circulatory system function [9, 15-18], as well as
psychosocial mechanisms linked to health, including reduced
social support [19, 20] and unhealthy behaviors [21]. Given the
breadth of these findings, it is likely that the poor health observed

among those with PTSD arise from multiple causes spanning
psychosocial, behavioral, and physiological dysregulation. With
many plausible mechanistic pathways, there is a need to establish
health-relevant biomarkers that can link PTSD to poor health and
act as proximal outcomes for interventions studies aiming to
reduce the health consequences associated with PTSD.
Accelerated biological aging is a novel mechanism that might
help explain how PTSD could result in poor health that manifests
across multiple physiological systems [22, 23] and risk for several
chronic diseases. Biological aging represents the rate at which
people’s physiological function declines, which differs among
people of the same chronological age. People with accelerated
biological aging are theorized to be at risk of poor health across
multiple organ systems [24], making assessments of biological
aging particularly useful as surrogate clinical outcomes relevant to
health [25, 26]. New advances in assessing biological aging using
epigenetic DNA methylation measures (DNAm) has enabled more
efficient and timely measurement of biological aging [27, 28],
particularly third-generation epigenetic measures such as
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DunedinPACE [27] that have been trained to predict previously-
validated measures of biological aging [28]. Epigenetic aging
measures are promising as biomarkers that could serve as
outcome for human intervention trials with relevance to health
and longevity [25, 29].

Empirical work has begun to support the theory that people
with PTSD might evidence poorer health due to more rapid aging
following the experience of trauma [30, 31]. Recent studies have
found PTSD is associated with epigenetic measures of biological
aging in both civilian [32] and military veteran populations
[33-35]. However, prior studies are limited by smaller samples and
often include primarily non-Hispanic White participants. Prior
studies are also primarily focused on comparing people with
current PTSD to people without current PTSD. Physiological
dysregulation associated with PTSD in the cardiovascular system
can be altered through PTSD treatment [18, 36], which makes it
equally interesting to study whether people with PTSD in the past
that is currently in remission have faster or slower aging. Relatively
fewer studies have examined whether a history of PTSD is
associated with different rates of aging, which could help provide
initial evidence as to the reversibility of accelerated aging
associations to support future interventions. There is a pressing
need to test the association of trauma and PTSD with accelerated
aging in larger and more diverse samples to support intervention
efforts to improve health for people who have experienced
trauma and PTSD.

Present study

The current study included 2309 participants from the Post-
Deployment Mental Health Study (PDMH; 37)—a cohort of U.S.
veterans deployed following September 11, 2001. Participants
provided blood samples used to derive DNA methylation (DNAm)
scores and were assessed for trauma and PTSD. We tested the
association between trauma, PTSD, and epigenetic biological
aging using PDMH data. Biological aging was assessed using
DunedinPACE, a validated third-generation DNAm measure of
aging trained directly on longitudinal trajectories of age-related
biomarkers [27, 28, 37, 38]. We hypothesized that veterans with
current PTSD would show accelerated aging compared to
veterans without PTSD. We also expected that veterans with
higher PTSD symptoms and more trauma exposure would
evidence accelerated aging. We also tested whether PTSD
(diagnostic status and symptoms) and trauma burden were
unique predictors of biological aging when included in the same
model. Finally, we examined the history of PTSD and accelerated
aging—we hypothesized that veterans with past PTSD would be
aging at a rate more similar to veterans without a history of PTSD
as compared to those with current PTSD.

METHODS

Participants and study design

Participants were members of the PDMH [39], multi-site study of US
Afghanistan and Iraq era veterans. The PDMH study protocol was approved
by the Durham VAMC Institutional Review Board and all participants
consented to participate. The VA Mid-Atlantic (VISN 6) MIRECC began
enrolling participants in 2005 as a regional cohort data repository to
facilitate mental health research focused on the millions of the troops
returning from post-9/11 deployment. This cohort has faced substantial
mental health challenges—over half of the veterans in the PDMH sample
who have sought VA care have at least one mental health diagnosis and
they have increasingly utilized VA health care as they enter midlife. The
cohort is notably diverse—over 20% of the sample identified as women
and approximately half the participants identified as African-American/
Black. The current study included participants who had DNA methylation
data available, were assessed for PTSD, and comprised the two major self-
reported racial/ethnic groups (non-Hispanic Black and non-Hispanic
White), resulting in a final sample of 2 309 veterans. Demographics and
other characteristics of the sample are described in the Results.

SPRINGER NATURE

Measures

Biological aging. Biological aging was assessed using a well-validated
epigenetic measure of aging, DunedinPACE, applied to DNAm data from
the PDMH cohort [40] as part of the larger PDMH survey. As described in
detail elsewhere [40], whole blood samples were collected via venipunc-
ture. In total, 2 444 samples with sufficient DNA yield and quality were
analyzed for methylation CpG sites using either the Infinium Human-
Methylation450 or MethylationEPIC Beadchip (lllumina Inc, San Diego, CA).
Internal replicates were included and checked for consistency using single
nucleotide polymorphisms (SNPs) on each array. Quality control (QC) was
performed using the minfi [41] and ChAMP [42] R packages. Samples were
excluded if average fluorescence signal intensity was below 2000 arbitrary
units or <50% of the mean intensity of all samples, >10% of probes were
not detectable (p-value >0.001), if a sex mismatch was detected, or if the
sample was deemed an outlier on principal component analysis plots. In
total, 134 samples were removed due to QC, producing 2310 samples.
Probe QC and data normalization was performed within each batch using
the R package wateRmelon [43]. Probes not detected (detection p-
value >0.001) in >10% of samples and those hybridizing to multiple
locations in the genome were removed. Raw beta values were normalized
using the dasen approach [43] and batch and chip adjustments were
accomplished using ComBat in the R package sva [44]. Methylation values
reflected the resulting normalized and adjusted beta values. The
DunedinPACE algorithm [38] was applied to these values using existing
code and produced a biological aging score for each participant.
DunedinPACE is currently the only epigenetic measure of aging trained
on longitudinal trajectories of age-related biomarkers that assess the rate
of biological aging, specifically the Pace of Aging [45, 46], and uses CpG
probes that are reliable across methylation chips [47]. Resulting values for
each veteran’s epigenetic aging scores represents years of biological aging
per chronological year (i.e. expected aging), with higher scores represent-
ing faster aging. Additional description of DunedinPACE and the original
biomarker-assessed measure of biological aging, the Pace of Aging, is
included in Supplemental Text 1. Additional models testing the main study
findings while controlling for proportion of cell counts are also presented
in Supplemental Analyses 1 and Supplemental Table 1. The primary study
results replicated in these models.

Posttraumatic stress disorder (PTSD). PTSD was assessed two ways, first
using diagnostic criteria in a clinical interview and second using a self-
report measure of PTSD symptoms. PTSD diagnostic status was assessed
using the Diagnostic Interview Schedule [48] according to the current
versions of DSM-IV. Diagnostic status first assessed whether participants
met criteria for current PTSD. If participants had a criterion A trauma but
did not meet criteria for current PTSD, they were then assessed for whether
they met criteria in the past. In total, 32.4% of participants assessed had
current PTSD, with an additional 9.8% meeting criteria for past PTSD. Self-
reported PTSD symptoms were assessed using the Davidson Trauma Scale
(DTS) [49], a 17-item self-report measures assessing PTSD symptoms. Items
use a 5-point Likert-scale for both frequency and intensity of symptoms
over the past week with higher scores corresponding to greater PTSD
symptoms. The DTS has been previously validated among post-9/11
veterans [50]. Total DTS scores were used to represent PTSD symptoms,
with higher scores representing more symptoms.

To provide the most inclusive measure of PTSD and replace a subset of
missing interview data (n =102, 4.4% of the total sample), we combined
the diagnostic interview and DTS results to derive our measure of current
PTSD. Participants were coded as having current PTSD if they met
interviewer-rated diagnostic criteria for PTSD or had a DTS score of 35 or
above, which is a reliable and valid clinical cutoff with specificity of 0.95
and sensitivity of 0.91 [50]. This resulted in an additional 454 participants
meeting criteria for current PTSD. Primary study results using only the
diagnostic interview PTSD diagnoses or DTS clinical cutoff are included in
the supplement. As shown in Supplemental Table 2, the primary study
results replicated when assessing PTSD diagnostic status using either
interviewer-assessed  or  self-report-assessed  diagnostic  status
independently.

Trauma exposure. Trauma exposure was assessed using the Traumatic
Life Events Questionnaire (TLEQ; [51]. The TLEQ is a self-report measure
that assesses whether participants experienced 22 categories of potentially
traumatic events across the lifespan. The number of categories of
potentially traumatic events participants experienced were summed to
create an index of traumatic event burden across the lifespan, with higher
scores representing relatively more traumatic experiences.

Translational Psychiatry (2024)14:4
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Table 1. Association of DunedinPACE with PTSD and Trauma among post-9/11 veterans.

Age-adjusted Bivariate

N =2309 B 95% CI
Current PTSD 0.23** [0.15, 0.31]
Age 0.25** [0.21, 0.28]
Gender

Race/ethnicity

Education

Methylation chip

Smoking Status

PTSD symptoms 0.13**
Age 0.25**
Gender

[0.09, 0.17]
[0.21, 0.28]

Race/ethnicity

Education

Methylation chip

Smoking Status

[0.05, 0.13]
[0.19, 0.27]

Lifetime trauma burden 0.09%*
Age 0.23**
Gender

Race/ethnicity

Education

Methylation chip

Smoking Status

Adding demographics

Adding smoking status

B 95% Cl i 95% CI
0.22%* [0.14, 0.30] 0.14%* [0.06, 0.22]
0.24** [0.20, 0.28] 0.27** [0.23, 0.31]
0.31%* [0.22, 0.41] 0.34%* [0.25, 0.43]
—0.20% [—0.36, —0.21] —0.37%* [—0.44, —0.29]
—0.07% [—0.11, —0.03] —0.04* [—0.08, —0.00]
—0.13% [—0.23, —0.03] —0.15%* [—0.24, —0.06]
0.33% [0.29, 0.36]
0.13%* [0.09, 0.16] 0.08** [0.04, 0.11]
0.25%* [0.21, 0.29] 0.27%* [0.23, 0.31]
0.31%* [0.22, 0.41] 0.34%* [0.25, 0.43]
—0.28%* [—0.35, —0.20] —0.36** [—0.43, —0.28]
—0.06% [—0.10, —0.02] —0.04 [—0.07, 0.00]
—0.13% [—0.23, —0.03] —0.15%* [—0.24, —0.06]
0.32%* [0.29, 0.36]
0.09%* [0.05, 0.13] 0.05%* [0.01, 0.09]
0.23%* [0.19, 0.27] 0.26** [0.23, 0.30]
0.28** [0.19, 0.38] 0.32%* [0.23, 0.41]
—0.29% [—0.36, —0.21] —0.37%* [—0.44, —0.29]
—0.08%* [—0.12, —0.04] —0.05* [—0.08, —0.01]
—0.16% [—0.26, —0.06] —0.17** [—0.26, —0.08]
0.33% [0.29, 0.36]

Note: Current PTSD indicates participants with current PTSD or no current PTSD, PTSD symptoms measures self-reported PTSD symptoms, and lifetime trauma
burden assesses count of trauma categories experienced across the lifespan. Each model adds more covariates to the model. Current PTSD is coded 0 = no
PTSD, 1 = current PTSD; gender is coded 0 = men, 1 = women; Race/ethnicity is coded 0 = non-Hispanic Black, 1 = non-Hispanic White; methylation chip is
coded 0 = Infinium HumanMethylation450 BeadChip, 1 = Infinium MethylationEPIC BeadChip, smoking status is coded 0 = never smoked, 1 = past smoking,

2 = current smoking. C/ confidence interval.
*p < 0.05. **p < 0.01.

Study covariates. Participants self-reported their age, gender, race and
ethnicity, years of education, and smoking status. Smoking was assessed
using a three-point scale ranging from never smoked to past smoking and
to current smoking.

Data analysis

We used a series of multiple regression models to test the associations
between PTSD, trauma, and epigenetic biological aging. We first tested
the association between current PTSD status and biological aging
assessed by DunedinPACE. Second, we tested the association between
PTSD symptoms and DunedinPACE. Third, we tested the association
between level of trauma exposure and DunedinPACE. Finally, we tested
the association between past PTSD and DunedinPACE and compared
this group’s biological aging to that of participants who never had PTSD
and those with current PTSD. For each association of interest, we
specified four models with an increasing number of covariates. Our first
model assessed the bivariate age-adjusted association, which regressed
DunedinPACE on chronological age and the predictor of interest. The
second model then controlled for additional demographic covariates
(gender, race/ethnicity, and years of education) and type of methylation
chip, and the third model accounted for smoking status (due to well-
established effects of smoking on DNAm). We also conducted three
secondary analyses to contextualize our main findings, specifically by
assessing the association of DunedinPACE with PTSD and trauma in the
same models, stratifying our main results by self-reported race/ethnicity
and gender, and by using a smoking methylation score as a covariate
instead of self-reported smoking status. All models were run in MPLUS
version 8.3 [52] using full maximum likelihood estimation to account for
missing data (MPLUS code can be requested from the corresponding
author). All Bs reported reflect standardized effect sizes, whereas Bs
reflect unstandardized values.

Translational Psychiatry (2024)14:4

RESULTS

Of the 2309 veterans included in the current study, 491 reported
they were women (21.3%) and 1,109 (48.0%) reported their race/
ethnicity as non-Hispanic Black. On average, the sample was 37.4
years old (SD=10.1 years) and had 13.6 years of education
(SD=3.6). In total, 1,168 participants (50.6%) met criteria for
current PTSD. The majority of participants (n=1 193, 51.9%)
reported having never smoked, with 527 reporting past smoking
(22.9%), and 579 reporting current smoking (25.2%). The veterans’
average rate of biological aging in the sample assessed by
DunedinPACE was 1.07 (SD=0.11) and ranged from 0.75 to 1.57.
DunedinPACE aging scores were correlated with chronological
age, B =0.23, 95% Cl [0.19, 0.27], p <.001. Participants reported
experiencing 7.1 categories of trauma (SD =3.5) in their lifetime
on average.

Current PTSD and accelerated aging

Veterans with current PTSD were aging faster biologically
compared to veterans without PTSD, B=0.23, 95% Cl [0.15,
0.31], p<0.00 (Table 1, Fig. 1). Veterans with current PTSD
continued to show faster DunedinPACE when controlling for
demographic covariates, $ = 0.22, 95% Cl [0.14, 0.30], p < 0.001, as
well as when accounting for smoking status, $=0.14, 95% Cl
[0.06, 0.22], p<0.001. The size of the unstandardized effect
controlling for demographic covariates (B = 0.03) was equivalent
to 0.4 months of additional aging per year. Said differently,
veterans with current PTSD were biologically aging 0.4 months
more per chronological year on this measure compared to
veterans without PTSD on average.

SPRINGER NATURE
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Fig. 1 Biological aging scores—measured by DunedinPACE and scaled to years of biological aging for each year of chronological aging—

based on current PTSD status, PTSD symptoms, and lifetime trauma burden. PTSD status included participants with (n = 1,168) and without
current PTSD (n = 1,141). Veterans with PTSD were aging faster, § =0.18, 95% CI [0.11, 0.27], p <.001. Categories for PTSD symptoms and
lifetime trauma burden were created using quartile splits across the full sample (n = 2,309) and are for illustrative purposes only—analyses
using PTSD symptoms and trauma burden were measured continuously. Veterans with more PTSD symptoms and more trauma were aging
faster, p =0.13, 95% Cl [0.09, 0.16], p <.001, and p=0.09, 95% Cl [0.05, 0.13], p < 0.001, respectively. Error bars represent 95% confidence

intervals.

PTSD symptoms and accelerated aging

Veterans who reported more PTSD symptoms also had faster
DunedinPACE compared to veterans reporting fewer PTSD
symptoms, 3 =0.13, 95% Cl [0.09, 0.17], p<0.001 (Table 1, Fig.
1). Veterans with higher levels of PTSD symptoms continued to
show faster DunedinPACE when controlling for demographic
covariates, B =0.13, 95% ClI [0.09, 0.16], p<0.001, and when
accounting for smoking status, 3 =0.08, 95% ClI [0.04, 0.11],
p < 0.001.

Trauma burden and accelerated aging

Veterans who reported more trauma exposure showed faster
DunedinPACE compared to veterans with less trauma exposure,
B =0.09, 95% CI [0.05, 0.13], p<0.001 (Table 1, Fig. 1). Veterans
with more trauma exposure continued to show faster Dunedin-
PACE when controlling for demographic covariates, = 0.09, 95%
Cl [0.05, 0.13], p < 0.001, and when accounting for smoking status,
B =0.05, 95% Cl [0.01, 0.09], p = 0.007.

Past PTSD and accelerated aging

In the subset of veterans (n=1221) who were diagnosed with
either current (n = 1005) or past PTSD (n = 216) using interview-
rated DSM-IV criteria, veterans with past PTSD evidenced slower
DunedinPACE than those with current PTSD, 3 =-0.18, 95% Cl
[-0.32, -0.04], p = .009. This association remained when controlling
for demographic covariates, $=-0.21, 95% ClI [-0.35, -0.07],
p =.003, as well as when accounting for smoking status, f=-
0.18, 95% Cl [-0.32, -0.04], p =.006. Descriptively, the average
DunedinPACE aging score for the veterans with past PTSD (1.059)
was more similar to the aging score of veterans without PTSD
(1.058) than the score of veterans with current PTSD (1.080), see
Fig. 1.

Secondary analysis: assessing trauma and PTSD in the

same models

We ran additional models assessing the additive association of
trauma exposure and PTSD with DunedinPACE in the same
models. Both current PTSD status, f =0.19, 95% Cl [0.11, 0.28],

SPRINGER NATURE

p <.001, and trauma burden were significantly associated with
DunedinPACE when included in the same model, = 0.06, 95% Cl
[0.02, 0.10], p =.007. These associations remained when control-
ling for demographic covariates. PTSD status remained associated
with DunedinPACE when also accounting for smoking status,
3=0.12, 95% CI [0.04, 0.20], p = .003, however the association for
trauma burden was no longer significant, § = 0.03, 95% Cl [-0.01,
0.07], p =.126. This pattern of associations replicated when using
PTSD symptoms and trauma in the same model, rather than PTSD
status (Fig. 2).

Secondary analysis: stratifying by gender and self-reported
race/ethnicity

We conducted additional analyses to examine our models while
stratifying by self-reported race/ethnicity (non-Hispanic Black and
non-Hispanic White) and gender (men and women). Descriptively,
the associations of PTSD diagnostic status, PTSD symptoms, and
trauma burden with DunedinPACE were stronger among non-
Hispanic White veterans compared to non-Hispanic Black veter-
ans. Associations between PTSD and DunedinPACE were non-
significant in some cases among the non-Hispanic Black veterans;
however, all estimates of the associations of PTSD and trauma
with DunedinPACE were in the positive direction. The associations
of PTSD diagnostic status and PTSD symptoms with DunedinPACE
were largely similar between men and women, whereas the
association between trauma burden and DunedinPACE was
descriptively, but not statistically, stronger among women. Full
results for the models are presented in Supplemental Table 3.

Secondary analyses: controlling for smoking history as
assessed by methylation

Although our primary findings replicated while controlling for self-
reported smoking status, it is possible that veterans’ history of
cigarette use was either incorrectly reported or did not account for
prior/current levels of use. As a result, we conducted additional
secondary analyses examining our primary findings when
controlling for a methylation measure of smoking history
[53, 54]. As shown in Supplemental Analysis 2, this smoking

Translational Psychiatry (2024)14:4
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Fig. 2 Biological aging scores for veterans with no lifetime PTSD,
past PTSD, and current PTSD. Biological aging is measured by
DunedinPACE and scaled to years of biological aging for each year
of chronological aging. The total N for this figure is 2,207, which
excludes 102 (4.4% of the study sample) who did not have
interviewer-rated data, which included past PTSD diagnosis.
Veterans with past PTSD were aging significantly slower than
veterans with current PTSD,  =-0.18, 95% Cl [-0.32, -0.04], p =.014.
Error bars represent 95% confidence intervals.

methylation score correlated with self-report smoking status
(r=.56, p<.001) and all primary study results replicated while
controlling for the methylation measure of smoking history.

DISCUSSION
In the current study, we investigated PTSD, trauma, and epigenetic
biological aging in a cohort of veterans from post-9/11 military
deployments (N =2 309). We found that participants with current
PTSD, higher levels of PTSD symptoms, and higher levels of
trauma exposure had accelerated rates of biological aging,
assessed by a third-generation epigenetic measure of aging [27].
Veterans who had a history of PTSD but did not meet current
criteria were aging at a rate that was more similar to veterans
without a history of PTSD compared to those with current PTSD.
These findings have theoretical and clinical implications.
Theoretically, this study provides additional support for the
hypothesized association between PTSD and accelerated biologi-
cal aging [29, 31, 32] and suggests that biological aging may be a
physiological mechanism that helps explain how PTSD contributes
to poorer health [30-32]. The observed differences in Dunedin-
PACE scores reflect a difference in the expected rate of aging
people might experience over the next months and/or years. The
rate at which individuals are aging can be contrasted with other
epigenetic measure of biological age, such as epigenetic clocks
[28] that aim to estimate biological age at a given point in time.
This may make measures of the rate of aging, such as
DunedinPACE, more appropriate to assess changes in the rate of
aging that might occur due to treatable mental health conditions,
such as PTSD. This work will help support efforts to outline the
casual pathways that might link PTSD to accelerated aging more
fully. For example, it is possible that PTSD symptoms or the

Translational Psychiatry (2024)14:4
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experience of trauma do not directly accelerate aging, but instead
do so through health-relevant psychosocial sequelae of PTSD,
such as health behaviors [9-11] or social isolation [19, 20]. Many
plausible direct and indirect causal pathways could explain these
associations [9-11] and future study is needed to better under-
stand the causal pathways linking PTSD to aging and health.
Different explanations would implicate different intervention
strategies to improve health among other veterans and the
millions of individuals with PTSD more broadly.

These results have important implications for clinical practice
for the treatment of PTSD and prevention of ill health, both
broadly and among veterans specifically. Most broadly, our
findings combined with past studies [32-35, 55, 56] suggest that
people with current PTSD are aging at a faster rate than those
without PTSD. Notably, we found that veterans who recovered
from PTSD were aging at a rate more similar to those who never
met criteria for PTSD, suggesting there may be some degree of
reversibility in accelerated aging among individuals with PTSD.
However, it is also possible people who are aging more slowly also
recover more readily from PTSD and future longitudinal work is
still needed to test the reversibility hypothesis. People with faster
aging develop more chronic diseases, have higher rates of
disability, and greater risk of premature mortality [23, 24]. Future
studies should examine whether efficacious PTSD treatments can
slow the rate at which people with PTSD are biologically aging
[25, 26, 29], in line with a prior randomized control trial of caloric
restriction [57]. The ability to measure epigenetic biological aging
using DNAm methods provides a promising surrogate clinical
outcome that can be assessed before and after treatment with
relevance to future health.

The results of this study also have clinical relevance to
populations at the greatest risk of developing PTSD, particularly
military veterans. An increasing proportion of the VA population
are comprised of the large cohorts of Gulf War and post-9/11
deployment veterans, with average ages of 50 and 37 years,
respectively [58]. These two eras now account for approximately
half the U.S. veteran population [59] and this cohort will require
increasing levels of medical care as they age. It is generally more
efficacious and cost-effective to prevent ill health from occurring
compared to treating chronic diseases after they have developed
[29]. Slowing the rate at which younger cohorts of veterans are
aging by treating PTSD, a common mental health condition
experienced by those cohorts, would have immense public health
and economic value, in addition to the improved health and well-
being of individuals receiving treatment. These realities combined
with our findings offer a time-sensitive opportunity to leverage
the reach of integrated medical systems, such as the U.S. Veterans
Health Administration, to test the efficacy and effectiveness of
slowing aging by treating PTSD and health-relevant sequelae
of PTSD.

This study has specific strengths, including the size of the
sample, the inclusion of two self-reported racial/ethnic groups, a
sizable number of women veterans, and multiple methods of
PTSD assessment. Our findings for the associations of trauma,
PTSD, and biological aging were conducted in a sample that
included two major racial/ethnic groups—non-Hispanic Black
people and non-Hispanic White people. Our sample also included
almost 500 women, which reflects the changing demographics
among the U.S. military veteran population. Our secondary
analyses suggest that the association of PTSD and DunedinPACE
might be stronger among non-Hispanic White veterans, whereas
the association between trauma burden and DunedinPACE might
be stronger among women. Future studies would benefit from
further investigating the association between these demographic
characteristics and DunedinPACE to better characterize which
post-9/11 veterans might benefit the most from efficacious PTSD
treatment in order to slow aging. Our study also included multiple
measures of PTSD (clinical interview, self-report), a comprehensive
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assessment of trauma [39], and was conducted in a veteran
sample with a high prevalence of PTSD. The size and diversity of
the sample, the use of multiple assessment modalities, and the
relatively high prevalence of PTSD are strengths that provide
converging evidence as to the reliability and generalizability of the
link between PTSD and accelerated biological aging in a well-
powered study. More empirical work is still needed to test the
behavioral and psychosocial sequelae of PTSD in additional racial
and ethnic groups and among additional non-military samples.
However, biological aging will likely be useful as an inclusive
physiological biomarker that can be used as a surrogate endpoint
in future research studying the causal pathways from PTSD to
clinical health outcomes [9-11], complementing disease-specific
or system-specific perspectives.

The results of the current study should be understood in the
context of its limitations. First, the study was conducted among
U.S. military veterans, which may limit the ability to generalize to
civilian populations [32]. Though the characteristics of the cohort
as post-9/11 veterans provides important benefits in terms of
clinical application, this may limit the ability to generalize these
results to other veteran cohorts. Second, trauma, PTSD, and DNAm
were assessed at a single timepoint. Future studies would benefit
from examining PTSD and biological aging longitudinally, which
would provide insight into the temporal ordering of these
associations and test change DunedinPACE among people whose
PTSD goes into remission. Third, the study was correlational and
cannot be used to determine causal inferences for the associations
of interest. Experimental designs, such randomized control trials,
would be needed to causally link PTSD and accelerated aging.
Fourth, the current study assessed PTSD using the most current (at
the time of assessment) DSM-IV criteria for diagnosis. It is unclear
whether similar associations would emerge with DSM-5 criteria.
Finally, biological aging was assessed using an epigenetic aging
measure applied to participants’ methylation. Although Dunedin-
PACE has been validated in a number of prior studies and external
cohorts [27] and was selected due to being trained directly on a
biomarker-derived measure of aging, it remains an indirect
measure of biological aging and other biological aging measures,
such as epigenetic clocks, might show different associations. The
measure was created in a non-military New Zealander sample, and
future research will be needed to determine to what extent
different DunedinPACE aging score correspond to different clinical
outcomes.

CONCLUSIONS

In a cohort of 2309 veterans assessed for trauma exposure and
PTSD, veterans with current PTSD showed accelerated rates of
biological aging. Veterans who had a history of PTSD did not
evidence accelerated aging compared to those with current PTSD.
The results suggest trauma and PTSD may accelerate biological
aging, which could help explain the increased risk for poor health
observed among people with PTSD. In addition, the results
highlight the importance of determining whether PTSD treatment
might slow biological aging and improve health, particularly
among groups that are at increased risk of PTSD, such as veterans.
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