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Multi-locus profiles of genetic risk, so-called “genetic risk scores,” can be used to trans-
late discoveries from genome-wide association studies into tools for population health
research. We developed a genetic risk score for obesity from results of 16 published
genome-wide association studies of obesity phenotypes in European-descent samples.
We then evaluated this genetic risk score using data from the Atherosclerosis Risk in
Communities (ARIC) cohort GWAS sample (N = 10,745, 55% female, 77% white, 23%
African American). Our 32-locus GRS was a statistically significant predictor of body
mass index (BMI) and obesity among ARIC whites [for BMI, r = 0.13, p<I x 107%;
for obesity, area under the receiver operating characteristic curve (AUC) = 0.57 (95%
CI 0.55-0.58)]. The GRS predicted differences in obesity risk net of demographic, geo-
graphic, and socioeconomic information. The GRS performed less well among African
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Americans. The genetic risk score we derived from GWAS provides a molecular mea-
surement of genetic predisposition to elevated BMI and obesity.

[Supplemental materials are available for this article. Go to the publisher’s online edi-
tion of Biodemography and Social Biology for the following resource: Supplement to
Development & Evaluation of a Genetic Risk Score for Obesity. ]

Introduction

Genome-wide association study (GWAS) results represent a potentially rich source of infor-
mation for etiological and treatment research that builds bridges between genome science
and clinical and public health practice (Janssens 2008; Khoury, McBride, et al. 2009).
Given the large number of such studies, sufficient GWAS data exist to support such trans-
lational research for a number of common chronic health conditions, including obesity
(Hindorff et al. 2009; Wray, Goddard, and Visscher 2007). Infrastructure is already in place
at the start of the translational pipeline, with GWAS data banked and curated in continu-
ously updated searchable databases (Hindorff et al. 2009; Yu et al. 2008). Likewise, at the
other end of the pipeline, evidence from translational research is evaluated to establish the
clinical utility of genomic information and issue guidelines for clinical practice (Khoury,
Feero, et al. 2009). However, significant gaps remain in the middle of the translational
pipeline, and approaches are needed to support research at this juncture, so that population-
based samples with rich environmental and phenotypic measurements can be used to follow
up disease markers identified in GWAS. Specifically, systematic approaches are needed to
sift the results of numerous association studies and distill the most promising set of markers
for further investigation. These approaches must be able to harness the power of existing
resources and flexibly accommodate the rapid rate of data discovery in genome science.

A key hurdle for research using GWAS results is that risky single-nucleotide poly-
morphisms (SNPs identified in GWAS may not cause adverse health outcomes but may
instead be proxies for (i.e., correlated with) unmeasured disease-causing variation in the
genome (Gibson and Goldstein 2007; Orozco, Barrett, and Zeggini 2010). GWAS meth-
ods exploit linkage disequilibria (LD) across the genome to leverage the measurement of
100,000 to one million SNPs and capture variation in the 10 million—plus SNPs the genome
is estimated to contain. The very large sample sizes in GWAS permit detection of risk
associations even when proxy SNPs are in imperfect LD with disease-causing variation
(correlation < 1). GWAS findings are generally applied to smaller samples designed to
elucidate etiological and clinical correlates of discovered genes. When GWAS SNPs are
translated to research using smaller samples, the measurement error resulting from imper-
fect LD with disease-causing variants can attenuate associations below levels these samples
are powered to detect. Genetic risk scores (GRSs) summarize risk-associated variation
across the genome (Horne et al. 2005) by aggregating information from multiple-risk SNPs
(the simplest GRSs count disease-associated alleles). Because GRSs pool information from
multiple SNPs, each individual SNP is less important to the summary measurement, and the
“signal” from the GRS is robust to imperfect linkage for any one SNP. For the same reason,
GRSs are less sensitive to minor allele frequencies for individual SNPs. As the number
of SNPs included in a GRS grows, the distribution of values approaches normality, even
when individual risk alleles are relatively uncommon (Fisher 1918). Therefore, the GRS
can be an efficient and effective means of constructing genome-wide risk measurements
from GWAS findings.
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Obesity is a public health problem that is well suited to risk assessment using a GRS.
It is highly prevalent (Ogden et al. 2006); it is a significant source of health care costs,
morbidity, and mortality (Adams et al. 2006; Allender and Rayner 2007; Trogdon et al.
2008); it is under strong genetic influence (Yang, Kelly, and He 2007); and GWAS are
beginning to elucidate its molecular genetic roots (O’Rahilly 2009). Therefore, transla-
tional research in obesity genomics may ultimately help to address a public health priority.
A key challenge in this effort is that obesity’s genetic roots are diffuse, multifactorial, and
nondeterministic; many variants scattered across the genome each contribute small risks
for obesity (McCarthy 2010). In other words, information from multiple genetic variants is
needed to characterize genetic susceptibility to obesity. Thus, a GRS may be useful. A fur-
ther challenge is uncertainty about the specific genetic variants that should be included in
an obesity GRS. Different GWAS identify different genomic loci, and when loci are repli-
cated across GWAS, the specific SNPs identified may be different (Hindorff et al. 2010).
To address this challenge, we developed a three-stage approach to review GWAS results
and select specific SNPs to include in a GRS. We devised our approach to be system-
atic and replicable and to leverage the discovery potential of GWAS while minimizing
the risk of including false-positive markers. In this article, we describe this three-stage
approach, apply it to develop a GRS for obesity, and test the GRS as a measure of obesity
risk using data from the population-based Atherosclerosis Risk in the Communities (ARIC)
Study.

Methods

Sample

The ARIC sample is described in detail elsewhere (Folsom et al. 2006; ARIC Investigators
1989). Briefly, ARIC is a prospective epidemiologic cohort study sponsored by the
National Heart, Lung, and Blood Institute to investigate the etiology of atheroscle-
rotic disease. The study draws from four U.S. communities: Minneapolis, Minnesota;
Washington County, Maryland; Forsyth County, North Carolina; and Jackson, Mississippi.
Participants were examined first during 1987-1989, and then during three subsequent
periods (1990-1992, 1993-1995, and 1996-1998), with ongoing follow-up conducted
annually by telephone. ARIC cohort genotype data from the Affymetrix Affy 6.0 Chip and
selected phenotypes were obtained for this study from the NIH database of Genotypes and
Phenotypes (dbGaP).

The original ARIC sample includes 15,792 participants (27% African American, 55%
female). The publicly available dataset obtained from dbGaP for this study includes geno-
type and phenotype data for 12,771 individuals. Of this sample, 1,212 participants had a
missing call rate that was greater than 2 percent for SNPs called successfully in greater
than or equal to 95 percent of the sample and were excluded from subsequent analyses,
following the quality control recommendations of the GENEVA ARIC Project (GENEVA
ARIC Project 2009). In addition, although the ARIC study design did not aim to include
relatives, genomic analysis by the ARIC investigators revealed familial relationships at
the level of half-siblings or closer among 1,674 participants. One member was selected
at random from each of the 105 “families” uncovered by this investigation to form a
sample of unrelated persons. After these exclusions, the sample consisted of 10,745 par-
ticipants (23% African American, 55% female, hereafter referred to as the “analysis
sample”).
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Body Mass Index and Obesity

Body mass index (BMI) was calculated using measurements of weight rounded to the
nearest pound and height rounded to the nearest centimeter. Obesity was defined as a
BMI greater than or equal to 30, according to the criteria established by the U.S. Centers
for Disease Control and Prevention. Anthropometric measurements were collected from
participants wearing a scrub suit and no shoes at the four in-person data collection
sessions.

Genotypes

Details on the genotyping of the ARIC sample are available through dbGaP and are
described in detail elsewhere (Psaty et al. 2009). Briefly, genotyping was conducted by
the Broad Institute using the Affymetrix Affy 6.0 SNP array and the Birdseed calling algo-
rithm (Korn et al. 2008). Following guidelines for the use of genotypic data provided by the
ARIC GWAS team, data were extracted for all SNPs with a sample-wide call rate greater
than or equal to 95 percent, with fewer than five discordant calls across duplicated DNA
samples in the quality-control subsample (n = 334) and in Hardy-Weinberg Equilibrium
(» > .001).

Genetic Risk Scores

Current mid-pipeline translational studies use either a “best-guess” approach or a “top-hits”
approach to select genetic markers to include in GRSs. The best-guess approach selects
markers identified in association studies that are located in or near genes with plausible
biological relationships to the pathophysiology of a phenotype or that demonstrate strong
and replicable association signals (Lyssenko et al. 2008; Morrison et al. 2007; Talmud
et al. 2010). The top-hits approach selects those markers with the strongest association
signals in a single GWAS, independent of their biological plausibility (Demirkan et al.
2010; He et al. 2010). Early studies have illustrated the promise of translational research
with GWAS markers, but as the field moves forward, more systematic approaches are
needed that can better integrate new information from the latest studies. Neither the top-
hits nor the best-guess approach provides a systematic and replicable means of integrating
results from multiple GWAS. Meta-analysis can accomplish this integration, but com-
prehensive meta-analyses are not always available. Moreover, the top-hits and best-guess
approaches do not provide a means to select specific SNPs for follow-up, and this problem
is not solved by meta-analysis. The approach of selecting the “lead” SNP at a locus—
usually the SNP with the lowest p value in the largest GWAS—is problematic, because
different GWAS can report different lead SNPs for the same locus because of differences
in GWAS chips, genotyping quality, and data-handling and analysis decisions. Thus, an
approach is needed that facilitates systematic and replicable SNP selection from results of
multiple GWAS.

Our three-stage approach integrates public-access resources including continuously
updated databases of GWAS results, Web-based whole-genome analysis tools, and
genome-wide data to identify the most promising set of SNPs for follow-up. Most
important, the three-stage approach addresses key limitations of the top-hits and best-
guess approaches, providing a systematic and replicable means of integrating findings
across multiple GWAS and selecting SNPs for follow-up in new samples. The three
stages are:
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1. Extraction. All SNPs associated with one of the selected phenotypes at a given
significance threshold are “extracted” from each GWAS and retained for further analysis.

2. Clustering:.Extracted SNPs are “clustered” according to patterns of LD that are deter-
mined from a reference population that matches the population in the GWAS included
in Stage 1. Clustering yields a set of “LD blocks.”

3. Selection. Statistical significance and replication are evaluated at the level of the LD
block. The original GWAS results are used to assign a minimum p value and a replication
count for each LD block. The minimum p value is the lowest p value reported for any
SNP in the LD block in any GWAS contributing data in Stage 1. The replication count
is the number of GWAS that reported an association for any SNP in the LD block at the
threshold defined in Stage 1.

We applied our three-stage approach to construct two GRSs for obesity. First, we
considered only GWAS published in print or online through December 31, 2008. We chose
these GWAS because they were used in previous research that created top-hits and best-
guess obesity GRSs. Thus, we used these GWAS to construct a GRS using our three-stage
approach and then compared it to two previously published GRSs (Li et al. 2010; Peterson
et al. 2011). Second, we considered all GWAS published through December 31, 2010.
We applied our three-stage approach to the results from the full set of GWAS and compared
the resulting GRS to a top-hits GRS generated from the largest meta-analysis of BMI
GWAS published to date (Speliotes et al. 2010), as well as to a best-guess GRS generated
from the full set of obesity-associated SNPs reported in the National Human Genome
Research Institute (NHGRI) GWAS Catalog (Hindorff et al. 2010). The derivation of the
GRS using the three-stage approach is described in detail in the supplemental material
(see Supplemental Methods and Supplemental Tables 1-7). Analyses (also described in
the supplemental material) revealed that the three-stage approach created GRSs that were
at least as predictive of BMI and obesity as GRSs created with the top-hits and best-guess
approaches. Further analyses to refine the GRS created through the three-stage approach
yielded a final set of 32 SNPs. We applied two weighting schemes to the 32 SNPs before
summing them to create our obesity GRS: (1) equal weighting, under which the score
was a simple count of BMI-increasing alleles; and (2) effect-size weighting, under which
BMl-increasing alleles were weighted by the effect size reported for that locus in the
GIANT Consortium (Speliotes et al. 2010) or the DeCode BMI GWAS (Thorleifsson et al.
2009). Effect-size weights were adjusted for LD between the SNP tested in the GWAS
and the SNP genotyped in the ARIC sample. Each of the 32 SNPs in the GRS was missing
for fewer than 1 percent of participants in any gender/ethnicity cell. GRSs were prorated
by dividing the GRS by the number of SNPs contributing data and then multiplying by
32. The SNPs included in the final obesity GRS, their BMI-increasing (‘“‘effect”) alleles,
nearby genes, and weights are reported in Table 1.

Evaluation of the Obesity GRS

Associations between the GRS and obesity-related traits (BMI, weight, waist circumfer-
ence, obesity) were tested with linear and logistic regression models. These and subsequent
models were adjusted for demographic and geographic control variables: age was specified
as a linear and a quadratic term; a product term was included for the interaction between
age and sex to account for sex differences in BMI and obesity distributions at different
ages; and the four ARIC Study Centers where participants were enrolled in the study were
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Table 1
Single nucleotide polymorphisms included in the obesity genetic risk score (GRS)
Effect Alle
Frequency (ARIC
Sample)
Effect Other African

Chr Nearby Gene SNP Allele Allele Weight Whites Americans
1 NEGRI rs2815752 G A 0.13  62% 55%
TNNI3K rs1514175 A G 0.07  43% 68%
PTBP2 rs1555543 A C 0.06  58% 43%
SEC16B 1s543874 G A 022  20% 25%
2 FANCL 1s759250 A G 0.10  29% 8%
LRPIB rs2121279 T C 0.08 14% 3%
TMEM18 rs2867123 G C 030 83% 88%
RBJ rs10182181 G A 0.14  54% 16%
3  CADM2 1s12714640 A C 0.10 19% 6%
ETV5/DGKG rs1516728 T A 0.11 77% 48%
4 GNPDA2 rs12641981 T C 0.18  43% 23%
SLC39A8 rs13114738 T C 0.13 8% 1%
5 POCS FLJ35779 rs10057967  C T 0.10  63% 51%
ZNF608 rs6864049 A G 0.07  54% 81%
TFAP2B 1s734597 A G 0.13 17% 9%
LINGO2 LRRN6C rs1412235 C G 0.11 31% 16%
LMX1B rs867559 G A 024  20% 32%
11 RPL27A rs2028882 C A 0.06  50% 34%
BDNF rs10501087  C T 0.18  79% 93%
MTCH2 rs12419692 A C 0.05 36% 9%
12 BDCDIN3D, FAIM2  rs7138803 A G 0.12  38% 17%
13 MTIF3, GRF3A rs1475219 C T 0.09 21% 22%
14 PRKDI rs1440983 A G 0.15 5% 23%
NRXN3 rs7144011 T G 0.13 22% 24%
15 MAP2KS 1s28670272 G A 0.13 7% 59%
16 GPR5B rs11639988 G A 0.17  85% 76%
ATXN2L, TUFM, rs12443881 T C 0.15  39% 9%

SH2B1

FTO r$9939609 A T 038 41% 48%
18 MC4R rs12970134 A G 0.21 26% 13%
19 KCTDI15 rs11084753 A G 0.04 67% 64%
QPCTL rs11083779  C T 0.07  96% 89%
ZC3H4 TMEM160 rs7250850 G C 0.09  71% 20%

Notes: Alleles are reported from the forward strand. The GRS was computed by counting the num-
ber of effect alleles at each SNP, multiplying that number by the SNP’s weight, and then summing
the results across the set of 32 SNPs. Weights reflect per-allele changes in BMI estimated in the the
GIANT Consortium GWAS meta-analysis (Speliotes et al. 2010), except for rs867559, for which the
weight was estimated in the DeCODE GWAS meta-analysis (Thorleifsson et al. 2009).
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entered as a series of dummy variables (this collection of variables is referred to here-
after as “demographics and geography”). Predictiveness of the GRS was evaluated using
three metrics that are established tools for evaluating risk markers in general (McGeechan
et al. 2008), as well as for evaluating the specific case of genetic risk scores (Mihaescu
et al. 2010). The first metric was R?, the proportion of variation explained in BMI. The
second metric used was AUC, the area under the receiver-operating characteristic (ROC)
curve for obesity, also known as the discrimination index. R> was estimated using demo-
graphics and geography-adjusted linear regression models. The AUC corresponds to the
probability that a randomly selected obese case will have a higher GRS than a randomly
selected nonobese control. A marker that discriminates no better than chance has an AUC
of 0.50. A marker that discriminates perfectly has an AUC of 1. A related metric is the
partial AUC (PAUC), which sets a specificity threshold and calculates an AUC-like statis-
tic for that specificity. Analyses of PAUC for the GRS set specificity at 80 percent (the
bottom fifth of the ROC curve). AUC and PAUC analyses were stratified by the ARIC
Study Center using Pepe’s method (Janes and Pepe 2009). To determine whether the GRS
improved discrimination over and above demographic and geographic information, we cal-
culated a second set of statistics, delta AUC and delta PAUC. Probit regression models were
used to generate predicted probabilities of obesity for each ARIC participant using a base-
line model that included demographic and geographic information and a test model that
also included the GRS. AUCs were calculated using these predicted probabilities as “risk
scores” (Pepe, Cai, and Longton 20006), and estimates of the differences between the base-
line and test models were bootstrapped to obtain confidence intervals. AUC analyses were
conducted using the Stata package “comproc” (Pepe, Longton, and Janes 2009). 3) The
third and final metric used was the integrated discrimination index (IDI) for obesity. The
IDI evaluates the added predictiveness of a marker by comparing predictions made using a
baseline set of risk markers to predictions that also include information about the new risk
marker:

IDI = (PrObtest, obese PrOblesl,non—obese) - (PrObbaseline, obese PrObbaseline, non—obese)

where “Prob” is the average predicted probability for a particular group from a par-
ticular model. The IDI measures change in model sensitivity net of change in model
specificity and is a more sensitive measure than delta AUC (Pencina, D’ Agostino, and
Vasan 2008). An IDI of zero indicates that the test model performs comparably to
the baseline model. Positive IDI values index net improvement in model sensitivity.
Baseline and test models for IDI analyses were identical to those used in delta AUC
analyses.

We tested differences between the predictiveness metrics for different risk scores by
bootstrapping confidence intervals around the R?> and AUC metrics (comparing the differ-
ence in estimated metric values across 1,000 random samples drawn with replacement from
the ARIC database; see Pepe, Longton, and Janes 2009) and by applying Pencina’s method
(Pencina, D’Agostino, and Vasan 2008) to test change in the IDI metric. Comparisons
were as follows: unweighted GRS versus weighted GRS; weighted GRS versus simple
genetic risk assessment (the sum of risk alleles at the two best-replicated obesity loci:
1$9939606, found in the gene FTO, and rs12970134, found downstream of the gene MC4R);
weighted GRS versus socioeconomic index (educational attainment measured in six cate-
gories: grade school or less, some high school, high school graduate, vocational school,
college, and graduate/professional school; information can be found in Supplementary
Table 8).
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Results

Obesity risk-allele distributions were similar for males and females but different for whites
and African Americans. The variance of the unweighted GRS was greater for whites as
compared to African Americans (SD = 3.50, as compared to 3.25, p < .001, using Brown
and Forsythe’s method; Brown and Forsythe 1974), as was the mean (M = 28.80, as com-
pared to 24.87, p < .001, using a r-test for unequal variances; see also Supplementary
Figure 1, available from the authors on request). This difference reflected lower frequen-
cies of BMI-increasing alleles for several GRS SNPs among African American ARIC
participants (see Table 1). Subsequent analyses were stratified by race.

The obesity GRSs were weakly but consistently associated with BMI and the proba-
bility of being obese among whites and African Americans, but associations were weaker
among African Americans (see Figure 1). Among whites, after adjusting for age, sex, and
geography, the unweighted GRS was associated with BMI at r = 0.12, and the weighted
GRS was associated with BMI at r = 0.13 (p < 1 x 1072 for both). This effect size
corresponded to a 0.60-unit increase in BMI per standard deviation increase in the GRS.
For each standard deviation increase in their unweighted and weighted GRSs, white ARIC
participants’ risk for obesity increased by 19.35 percent and 20.51 percent, respectively
(p < 1 x 1078 for both). Among African Americans, the weighted and unweighted GRSs
were associated with BMI at r = 0.05 (p < .05 for both). For each standard deviation
increase in their unweighted and weighted GRSs, African American ARIC participants’

White ARIC Participants (n = 8,286) Black ARIC Participants (n = 2,442)

2
£ 3
2
3
©
£
g
=
>
g &
[2a]

r=0.13 r=0.05
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-4 -2 0 2 4 -4 -2 0 2 4

Standard Deviations of Genomic Risk (Weighted Genomic Risk Score)

Figure 1. Panel A. BMI for African American and white ARIC participants plotted against the
weighted obesity genetic risk score. Dashed outlines represent 95 percent confidence intervals.
Pearson correlations (r) were adjusted for gender, age, and data collection at the ARIC Study
Center. Removal of outliers (not shown) did not alter correlation estimates at the third decimal point.
Correlations were statistically significant for white (p < 1 x 1073°) and African American (p =
.014) ARIC participants.
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White ARIC Participants (n = 8,286) Black ARIC Participants (n = 2,442)
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Figure 1. Panel B. Percentage white and African American ARIC participants who were obese (BMI
> 30) at the first study visit, by quintile of genetic risk score. Quintiles were determined separately for
whites and African Americans. Error bars represent 95 percent confidence intervals. Risk ratios are
for comparisons of highest to lowest quintiles of genomic risk and were estimated with adjustment
for gender, age, and data collection at the ARIC Study Center. Dashed lines represent sample means.
Among white ARIC participants, all quintile-to-quintile differences are statistically significant (p <
.01), with the exception of the third and fourth quintiles. Among African American ARIC participants,
the percentage of obese individuals in the lowest quintile was lower than the percentage of obese
individuals in the third and fourth quintiles (p < .05).

risk for obesity increased by 3.54 percent (p = .059) and 4.92 percent (p = .017), respec-
tively. Results were substantively unchanged when control variables were removed from
the models.

Although we stratified our analyses by ethnicity (whites and blacks), we conducted
an additional analysis to determine whether population stratification within the white and
black subsamples influenced our estimates of GRS-BMI or GRS-obesity associations.
Principal components derived from eigen analysis of genome-wide SNP data can be used to
control for population stratification in genetic association analyses (Price et al. 2006). Such
principal components were derived separately for whites and blacks in the ARIC cohort
using the method described by Patterson, Price, and Reich ( 2006) and were included
in the database we obtained from dbGaP (GENEVA ARIC Project 2009). Adjustment
for these principal components as covariates in regression analyses did not change our
results.

We conducted a series of additional sensitivity analyses to evaluate heterogeneity
in GRS associations (described in detail in the supplementary material, available from
the authors on request). These analyses supported a linear association between the GRS
and BMI, showed that GRS-BMI associations were similar to GRS-weight and GRS—
waist circumference associations, and revealed no sex or age differences in GRS-BMI
associations.

The obesity GRSs performed similarly on the three predictiveness metrics (see
Table 2). The top panel of Table 2 addresses clinical validity and presents the three metrics
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for the unweighted and weighted GRSs. Among whites, weighted and unweighted obesity
GRSs explained small but statistically significant proportions of the variance in BMI (R?),
discriminated obese from nonobese participants modestly better than chance (AUC), and
contributed small net improvements to the sensitivity of an obesity prediction model over
and above demographic and geographic information (IDI). Among African Americans, the
GRS did not contribute to the explanation of variance in BMI over and above demographic
and geographic information, to the discrimination of obese from nonobese participants, or
to the net sensitivity of the obesity prediction model. Use of weights derived from BMI
GWAS improved the performance of the GRS among whites and African Americans, but
this improvement was not statistically significant (p > .10 for all comparisons).

The bottom panel of Table 2 addresses research utility, presenting predictiveness met-
rics for two comparison measures of obesity risk: the simple genetic risk assessment
(weighted combinations of 1$9939609 in FTO and rs12970134 downstream of MC4R) and
the socioeconomic index (a six-category measure of educational attainment). The F70 and
MCH4R loci and socioeconomic status are robust correlates of BMI and obesity in adult
samples (Ford and Mokdad 2008; Hardy et al. 2010). Comparison of the 32-locus GRS to
a two-locus risk assessment can illustrate whether the GRS offers value added over a sim-
pler genetic risk assessment. Comparison of the GRS to socioeconomic status can illustrate
how the predictiveness of the GRS compares to the predictiveness of a social determi-
nant of obesity that is not easily changed but is understood to be important in etiological
research (Drewnowski 2009). Among whites, the genetic risk scores performed better than
the comparison measures of obesity risk on all three metrics (p < .01 for all comparisons).
Among African Americans, the GRSs performed no differently than the simple genetic
risk assessment (p > .10) and performed less well than the socioeconomic index (p = .021).
When combined with the comparison risk measures and demographic and geographic infor-
mation, the GRS improved predictiveness for whites but not for African Americans (see
Supplementary Table 9, available from the authors on request).

Figure 2 shows the model-based ROC curves for a baseline model that included demo-
graphic and geographic information and a test model that also included the weighted GRS.
The change in AUC from the baseline model to the test model was greater than zero (delta
AUC = 0.048, 95% CI = 0.313-0.658, p < 10~7), indicating that the GRS improved dis-
crimination of obese cases. This improvement in discrimination was concentrated at low
specificities but did extend to the portion of the ROC curve that is of greatest interest to
clinicians. At a specificity of 0.8, the test model including the GRS was marginally more
sensitive than the baseline model (delta PAUC = 0.007, 95% CI < 0.0003-0.010, p <.001).
Results for African Americans are presented in Supplementary Figure 2 (available from the
authors on request).

Discussion

We used a three-stage approach to construct an obesity GRS from GWAS results. Our
tests of this obesity GRS in the population-based ARIC cohort revealed it to be a highly
statistically significant predictor of BMI, as measured at four time points across 10 years;
weight and waist circumference; and obesity. In terms of value added, the GRS improved
prediction of BMI and obesity over and above demographic and geographic information,
FTO and MC4R genotypes, and information about socioeconomic status. Thus, the GRS
provides a measure of genetic predisposition to obesity that could inform etiological and
treatment research.
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Test Model with Obesity Genetic Risk Score () l
(AUC = 0.574, 95% CI 0.558-0.589) l_..'
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5
J Baseline Model
¢ (AUC = 0.526, 95% CI 0.510-0.541)

1-Specificity

Figure 2. Receiver-operating characteristic (ROC) curves for obesity among white ARIC partici-
pants (n = 8,286). Baseline model = gender, age (quadratic), gender-age interaction, ARIC Study
Center; Test Model = baseline model + weighted obesity genetic risk score. ROC curves were con-
structed using predicted values from probit regressions of obesity (BMI > 30) on the model terms.
Delta AUC (AUCrey — AUCgysetine) = 0.048, 95% CI = 0.031-0.066, p < 1 x 10~". Delta PAUC at
80% specificity = 0.007, 95% CI = 0.003-0.010, p < .001. AUCs, PAUCs, and delta AUCs were
estimated using Pepe’s method (Janes and Pepe 2009; Pepe, Longton, and Janes 2009).

The research utility of the GRS is likely limited to samples of European descent. GRS-
BMI and GRS-obesity associations for African American ARIC participants were much
smaller than comparable associations for white ARIC participants. Although the sample
included fewer African Americans than whites, power to detect effects of equal size as those
observed in whites was well over 80 percent in the African American sample. Moreover,
effect-size measures (; R?, relative risk, AUC, IDI) showed little evidence that the GRS pre-
dicted BMI or obesity among African Americans. These results suggest caution in using
GWAS of European-descent populations to derive GRSs for African Americans. Our anal-
yses did indicate that the GRS performed similarly among men and women. However,
emerging evidence for gene-sex interactions in obesity (Benjamin et al. 2011; Heid et al.
2010) suggests that future obesity GRSs may require sex-specific construction.

Our results have implications for theory, research, and clinical practice. With respect
to theory, our results are consistent with the hypothesis that genetic risk for obesity is
quantitatively distributed and can be operationalized in a GRS (Plomin, Haworth, and
Davis 2009). With respect to research methods, our findings illustrate one approach to
operationalize quantitative genetic risk. A systematic and replicable approach to select-
ing SNPs from association studies to follow-up on etiological and treatment research will
be especially important with the advent of next-generation sequencing approaches. Next-
generation sequencing is likely to uncover many new disease-associated loci for obesity, as
well as for other phenotypes of interest to clinicians and researchers. These variants, though
rarer in the population, may have higher penetration and thus greater clinical relevance.
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Future research can also make use of the GRS derived in this study as a measure of inher-
ited obesity risk. With respect to clinical practice, results indicate that for persons in middle
age, GWAS SNP-based approaches to obesity risk assessment offer little in the absence of
more detailed information about lifestyle and environment. Although genetic information
reliably predicted risk for obesity over and above demographics and geography, the mag-
nitude of this additional risk was insufficient to recommend our score for use in clinical
risk assessments. This finding is especially important in the context of questions regard-
ing consumer genomics services (Evans et al. 2011). Our three-stage approach produced
a more comprehensive genetic risk assessment for obesity than those currently produced
by companies marketing genomics services directly to consumers. The very modest risk
information furnished by our GRS recommends that health professionals be cautious in
interpreting risk information provided by consumer genomics companies. The standard of
evidence used here—multimethod assessment of predictiveness in large, population-based
samples—should be considered a minimum standard for determining the validity of such
risk information.

Results should be considered in light of the following limitations. First, some ARIC
participants were included in the samples of some of the GWAS used to construct the
GRS. However, these ARIC participants represented a minority of the GWAS samples,
and results in the ARIC sample are similar to results from samples not included in any
of the GWAS (Li et al. 2010; Peterson et al. 2011). Second, some risk loci identified by
our three-stage approach could only be genotyped in the ARIC sample using relatively
weak proxies. Given the small improvement to predictiveness associated with each addi-
tional SNP included in the GRS, it is unlikely that this limitation influenced the substance
of our results, but it is possible that our GRS is moderately more predictive than analy-
ses in the ARIC cohort suggest. Third, our analyses were limited to African Americans
and white Americans. The ARIC cohort does not contain Asian or Hispanic individuals.
It remains unclear whether the relatively greater similarity between these and European
populations (Jorde and Wooding 2004) would support the generalization of our GRS.
However, GWAS of Asian and Hispanic samples (He et al. 2010; Norris et al. 2009) suggest
that a European-descent population-derived GRS may omit important risk loci for these
populations. As more GWAS of non-European populations become available, our three-
stage approach can be used to derive additional population-specific GRSs. Fourth, there is
mounting evidence that many genetic factors predisposing individuals to obesity are sex-
specific (McCarthy et al. 2003), and that GWAS that fail to model such sex-specificity may
not detect important risk variants (McCarthy 2007). Results from GWAS modeling gene-
sex interaction support this hypothesis (Benjamin et al. 2011; Chiu et al. 2010; Heid et al.
2010). As more such GWAS become available, our three-stage approach can be used to
derive sex-specific GRSs for obesity. Finally, the ARIC sample is limited to individuals
in middle age. There is evidence that genetic risk for obesity has dynamic consequences
throughout development (Elks et al. 2010; Sovio et al. 2011). It will be important in sub-
sequent investigations to evaluate our obesity GRS in longitudinal cohorts that capture
a broader section of the life course, and particularly in young people, as they are a key
prevention target (Belsky et al. 2012; Dietz 2004).

In this study, we constructed a GRS for obesity and showed that it predicted BMI and
obesity in a population-based sample of middle-aged adults. These associations suggest that
future research into obesity etiology and treatment can make use of genetic information.
However, our analyses do not support the use of genetic testing for individual-level obesity-
risk prediction. Future research with this GRS should characterize the expression of genetic
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risk across the life course and particularly during childhood, when intervention to prevent
the development of obesity may be most effective.
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Supplement

This supplement describes the application of the 3-stage approach to create a genetic risk score (GRS)
for obesity. The supplement is organized into 3 sections: The first section describes the creation of the
obesity GRS: Stage 1. Extraction; Stage 2. Clustering; and Stage 3. Selection. The second section
describes analyses comparing the resulting GRS to GRSs created with the best-guess and top-hits

approaches. The final section describes sensitivity analyses to test heterogeneity in GRS associations.
PART 1. CREATING THE OBESITY GRS
Stage 1. Extraction

For our 3-stage approach analyses, we considered GWAS of European-descent samples that targeted 4
phenotypes: obesity, weight, waist circumference, and body mass index (BMI) (hereafter “obesity-
related phenotypes”). A search of the NGHRI GWAS Catalog using the HUGE Navigator

(http://www.hugenavigator.org) identified 16 GWAS that met these inclusion criteria, 9 of which were

published by December 31, 2008 (Supplementary Table 1).

In Stage 1 (Extraction), we compiled association results reported in the manuscripts and supplementary
materials of the GWAS and extracted rs-numbers and p-values for SNPs associated with any of the 4
phenotypes in the discovery or combined discovery and replication samples at an alpha level of 1x107
(n=103 SNPs in the subset of 9 GWAS, n=519 SNPs in the full set of 16 GWAS, Supplementary Table 2).
The significance level of p<1x10~ was the most generous threshold at which most GWAS published
results and is the threshold used in the NHGRI GWAS Catalog (Hindorff et al. 2009). Associations were
not extracted from replication samples because few GWAS reported novel associations identified in
replication samples and some GWAS did not include replication samples or included replication samples
of different ethnicity. Discovery sample risk SNPs that failed to replicate within an individual GWAS were
included because replication was evaluated at the level of the GWAS publication rather than the specific

test sample.
Stage 2. Clustering

In Stage 2 (Clustering), we grouped the extracted SNPs into “LD blocks.” We defined LD blocks using data
from the HapMap CEU sample (Phase 3), queried using Seattle SNPs’ web-based Genome Variation
Server (http://gvs.gs.washington.edu/GVS). For each SNP extracted in Stage 1 (“seeds”), we defined an
LD block as the region containing all SNPs in LD with that seed at a threshold of R?20.95. Then, beginning
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with the block closest to the start of each chromosome, we pruned blocks that did not contain a unique
seed. This process yielded n=66 LD blocks from the subset of 9 GWAS published by December 31, 2008
and n=158 LD blocks from the full set of 16 GWAS.

Stage 3. Selection

In Stage 3 (Selection), we retained LD blocks that we classified as genome-wide significant or as
replicated. Genome-wide significant LD blocks were those that contained =1 SNP associated with an
obesity-related phenotype at p<1x10°®. Replicated blocks were those that contained SNPs extracted
from =2 GWAS. This process yielded n=37 LD blocks clustered around 11 loci on chromosomes 1-
4,9,11,12,16,18, and 19 from the subset of 9 GWAS and n=69 LD blocks clustered around 32 loci on
chromosomes 1-6,9,11-14,16,18, and 19 from the full set of 16 GWAS (Supplementary Tables 3, 4).
Sensitivity analyses relaxing the LD threshold used to define LD blocks yielded fewer LD blocks (e.g., for
the full set of 16 GWAS, n=58 at an R” threshold of 0.70), but did not alter the loci identified as genome-

wide significant or replicated in the original analyses.

PART 2. COMPARING THE 3-STAGE APPROACH GRSS TO THE TOP-HITS AND BEST-GUESS GRSS

To construct and test our GRSs, we followed-up the LD blocks identified in our 3-stage approach
analyses in the GWAS dataset from the Atherosclerosis Risk in Communities (ARIC) Study. This dataset is
publicly available through the National Institutes of Health Database of Genotypes and Phenotypes

(dbGaP) (http://www.ncbi.nlm.nih.gov/gap, phs000090.v1.p1) and is described in the Data section of

the main text.

We selected SNPs in the ARIC database to include in our two GRSs as follows: We defined tag
SNPs for each of the LD blocks as SNPs that were in LD with every seed contained in the block at
R?20.95. We then matched 1 tag SNP per LD block with a SNP in the ARIC study genotype database that
met the GENEVA ARIC Project Team’s quality control criteria (GENEVA ARIC Project 2009). If no tag SNPs
in an LD block could be matched in the ARIC database, we relaxed the LD threshold used to define a tag
SNP until either a) the resulting set of tag SNPs overlapped with tag SNPs that we had already matched
in the ARIC database, or b) a match with a new SNP in the ARIC database was achieved. These analyses
yielded a set of n=28 SNPs from the subset of 9 GWAS and a set of n=57 SNPs from the full set of 16
GWAS.
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To compute the 3-stage approach GRSs for each ARIC participant, we (1) identified the obesity-
associated allele for each SNP from the GWAS where that SNP was reported; (2) calculated the mean
number of risk alleles at each locus; and (3) summed these means across loci to produce the 3-stage

approach genome-wide scores.

To compute the top-hits and best-guess approach GRSs, we selected SNPs from the ARIC
database to match SNPs from 3 published GRSs (Li et al. 2010; Peterson et al. 2011; Speliotes et al. 2010)
and the full set of obesity-associated SNPs listed in the NHGRI GWAS catalog for GWAS of European-
descent samples. In cases where a specific SNP was not available in the ARIC database, we selected its
closest LD proxy. We then summed obesity-associated alleles across each set of selected SNPs to create

the comparison genome-wide scores.

To test if the 3-stage approach could construct a GRS that was at least as predictive of BMI and
obesity as GRSs created with the top-hits and best-guess approaches, we compared effect sizes for
different GRSs using the ARIC data. All GRSs were standardized to have mean=0 and standard
deviation=1. To measure GRS effect sizes for BMI, we estimated Pearson correlations (r) from separate
linear regressions of BMI on each of the GRSs. To measure GRS effect sizes for obesity, we estimated
odds ratios (OR) from separate logistic regressions of obesity on each of the GRSs. Regression models
were adjusted for age (linear and quadratic terms), gender, the age-gender interaction, and the ARIC
Study Centers where data were collected (hereafter these statistical adjustments are described as
“demographics and geography”). To test differences between GRS effect sizes, we conducted F-tests (for
effect sizes estimated from linear regressions) and Wald tests (for effect sizes estimated from logistic
regressions). For these tests, models including each of the GRSs being compared were jointly estimated
using the seemingly unrelated regression method. Seemingly unrelated regression is a statistical
approach for comparing coefficients from non-nested regression models (Baltagi 1980; Verzilli, Stallard,
and Whittaker 2005). Effect sizes were similar for all GRSs. Statistical tests indicated that our 3-stage
approach GRSs performed as well as or better than GRSs created using top-hits and best-guess
approaches (Supplementary Table 5). Thus, the 3-stage approach produced a GRS that was at least as
predictive as top-hits and best guess approach GRSs. We used the 3-stage approach GRS created from
the full set of 16 GWAS (hereafter the “Obesity GRS”) in subsequent analyses.

Refining the 3-Stage Approach GRS for Obesity. At 7 of the 32 loci identified in the 3-stage
approach analyses of GWAS results (in or near the genes TMEM18, ETV5, BDNF, MTCH2, FTO, MC4R,

and KCTD15), multiple LD blocks met selection criteria (genome-wide significance or replication). To
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refine the 3-stage approach GRS, we asked whether the genotype for a single SNP could be used instead
of the mean number of risk alleles at a locus. First, we identified the BMI-increasing allele for each SNP
and calculated the linear association between the number of BMI-increasing alleles for that SNP and
BMI measured at the first ARIC study visit. We next compared test-statistics and effect sizes between
SNPs at each locus to identify the “lead-SNP”, the SNP with the strongest association, and the worst-
associated SNP. We then compared the effect size for the lead-SNP to the effect sizes for the worst-
associated SNP and for the mean number of risk alleles across SNPs at the locus. These analyses asked 1)
whether there was any difference in the signal from the different SNPs in a correlated set; and 2)
whether a single SNP could provide an adequate summary of obesity-associated variation at the locus.
Models were fitted using linear regression with statistical adjustment for demographics and geography.
We compared effect sizes using the seemingly unrelated regression method (Baltagi 1980; Verzilli,
Stallard, and Whittaker 2005). Supplementary Table 6 shows results from this analysis. At all loci, the
lead SNP, worst-associated SNP, and mean number of risk alleles performed similarly, with the
exception of the FTO locus, at which the lead SNP rs9939609 performed slightly better than the worst-
associated SNP rs1477196. Finally, we tested whether including multiple SNPs at a locus improved the
prediction of BMI in a regression model. Analyses were conducted using the variable selection algorithm
in the Stata program mfp (Royston and Ambler 1999). Details of this method are reported elsewhere
(Royston and Sauerbrei 2003). Briefly, SNPs were added to a baseline model predicting BMI as a function
of age, sex, and geography in order of decreasing statistical significance of the SNPs’ bivariate
association with BMI. SNPs were retained in the model if their inclusion resulted in a statistically
significant (p<0.05) decrease in model deviance. Results showed that model fit was not improved by the
inclusion of multiple SNPs at any locus. Therefore, we retained only the best-associated SNPs from each

of the 7 loci, resulting in a 32-SNP GRS (Supplementary Table 7).

PART 3. SENSITIVITY ANALYSES TO TEST HETEROGENEITY IN GRS ASSOCIATIONS

We tested the linearity of GRS-BMI associations using quadratic and cubic specifications of the
GRS in linear regression models. Coefficients for the higher order (i.e. squared and cubic) GRS terms
were not statistically significant (p>0.10 for all), indicating that the GRS-BMI association was
approximately linear. We tested the measurement specificity of GRS-BMI associations by comparing GRS
effect sizes for BMI to GRS effect sizes for weight and for waist circumference using the seemingly

unrelated regression method (Baltagi 1980). GRS coefficients were similar across all three models
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(p>0.10 for tests of differences), indicating that the GRS predicted not just BMI, but related measures of
body size and adiposity. We tested the whether GRS-BMI associations were different for men and
women or for older as compared to younger individuals using product terms in linear regression models.
Coefficients for product terms were not statistically significant (p>0.10 for all), indicating that GRS-BMI
associations were similar for men and women and across early to late mid-life. Finally, we tested
whether GRS-BMI associations differed across the 4 in-person assessments in the ARIC Study using the
seemingly unrelated regression method. GRS effect sizes were similar across all 4 assessments (p>0.10
for all comparisons), indicating that GRS-BMI associations were consistent across measurement

intervals.
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Supplementary Table 1. Genome Wide Association Studies Included In 3-Stage Approach Analyses.
GWAS information comes from the NHGRI GWAS Catalog (www.genome.gov). Risk SNPs were defined
as any SNP associated with an obesity-related phenotype (BMI, weight, waist circumference, categorical
obesity) at p<10~ in the discovery or combined discovery and replication samples of the GWAS.
*|talicized counts include imputed genotypes; **Lindgren et al. also investigated associations with waist
circumference, and these are the association tests included in the SNP selection analysis; ***Scherag et
al. also investigated associations with BMI and both phenotypes were included in the SNP selection
analysis. Citations for the GWAS are included as (Cotsapas et al. 2009; Fox et al. 2007; Frayling et al.
2007; Heard-Costa et al. 2009; Herbert et al. 2006; Hinney et al. 2007; Johansson et al. 2010; Lindgren et
al. 2009; Liu et al. 2010; Liu et al. 2008; Loos et al. 2008; Meyre et al. 2009; Scherag et al. 2010; Scuteri
et al. 2007; Speliotes et al. 2010; Thorleifsson et al. 2009; Willer et al. 2009).

GWAS Chip SNPs SNPs in GWAS Catalog

Risk SNPs Included in

Manufacturer  Genotyped*

SNPs Phenotypes Analyses
Herbert et al. 2006 Affymetrix 86,604 0 Obesity 0
Frayling et al. 2007 Affymetrix 490,032 1 BMI 1
Scuteri et al. 2007 Affymetrix 362,129 1 BMI, Weight 12
BMI, Waist
Fox et al. 2007 Affymetrix 70,897 5 , als 12
Circumference
Obesit | t
Hinney et al. 2007 Affymetrix 440,794 g Obesity (early onse 15
extreme)
Liu et al. 2008 Affymetrix 379,319 0 Obesity 3
Loos et al. 2008 Affymetrix 344,883 2 BMI 10
Thorleifsson et al. 2009 Illumina 305,846 18 BMI, Weight 47
Aff trix &
Willer et al. 2009 ymetrix 2,399,588 11 BMI 24
Illumina
Meyre et al. 2009 Illumina 308,846 5 Obesity 32
Cotsapas et al. 2009 Illumina 457,251 13 Obesity (extreme) 15
Aff trix &
Lindgren et al. 2009 PR 2,573,738 NA Adiposity** 10
Ilumina
Aff trix &
Heard-Costa et al. 2009 yn.1e e 512,349 7 Waist Circumference 320
lumina
Johansson et al. 2009 Illumina 318,237 17 BMI, Weight 26
Liu et al. 2010 Illumina 559,712 2 BMI 3
Aff trix & Obesit
Scherag et al. 2010 ymetrix 1,596,878 2 estty 13
Illumina (extreme)***
Affymetrix,
Speliotes et al. 2010 Illumina, ~2.8 million 38 BMI 42
Perlegen
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Supplementary Table 2. Risk SNPs and Source
Publications: All SNPs reported as associated
with Obesity, BMI, Weight, or Waist
Circumference at p<1x10~ in Discovery or
Combined Discovery and Replication Samples

DW Belsky et al.

Supplementary Table 2 Continued

Risk SNP Trait Publication
Frayling et al. 2007

rs9939609 BMI Science

rs1121980 BMI

6602024 BMI

rs7193144 BMI

rs8050136 BMI

rs9926289 BMI

rs9930506 BMI Scuteri et al. 2007

rs9939609 BMI

rs9939973 BMI

rs9940128 BMI

rs4512445* Waist Circumference

rs7193144 Waist Circumference

rs8050136 Waist Circumference

rs1106683 BMI

rs1106684 BMI

rs1333026 BMI

rs10488165 Waist Circumference

rs10504576 Waist Circumference

rs1875517 Wa!st C!rcumference Fox et al. 2007

rs2206682 Waist Circumference

rs2223662 Waist Circumference

rs4469448 Waist Circumference

rs4471028 Waist Circumference

rs6996971 Waist Circumference

rs953536 Waist Circumference

rs10008032 Extreme Obesity

rs1121980 Extreme Obesity

rs16998603 Extreme Obesity

rs2172478 Extreme Obesity

rs2969001 Extreme Obesity

rs3783950 Extreme Obesity

rs41492957 Extreme Obesity

rs6076920 Extreme Obesity Hinney et al. 2007

rs619819 Extreme Obesity

rs7193144 Extreme Obesity

rs8050136 Extreme Obesity

rs9276431 Extreme Obesity

rs9939609 Extreme Obesity

rs9939973 Extreme Obesity

rs9940128 Extreme Obesity

Risk SNP Trait Publication
rs16986921 BMI
rs6013029 BMI
rs6020712 BMI Liu et al. 2008
rs10498767 BMI
rs1121980 BMI
rs17700633 BMI
rs17782313 BMI
52572106 BMI Loos et al. 2008
rs2679120 BMI
rs4623795 BMI
rs7212681 BMI
rs7336049 BMI
rs748192 BMI
rs10501087 BMI
rs10783050 BMI
rs10913469 BMI
rs12970134 BMI
rs1776012 BMI
rs2568958 BMI
rs2867125 BMI
rs29941 BMI
rs3101336 BMI
rs3751812 BMI
rs4074134 BMI
rs467650 BMI
rs4788102 BMI
rs4854344 BMI
rs4923461 BMI
rs6265 BMI
rs6499640 BMI
rs7138803 BMI
rs7190492 BMI
rs7336332 BMI
rs7481311 BMI
rs7498665 BMI
rSip61317 BMI Thorleifsson et al.
rs7647305 BMI 2009
rs7647305 BMI
rs8044769 BMI
rs8049439 BMI
rs8050136 BMI
rs836964 BMI
rs867559 BMI
rs925946 BMI
rs9424977 BMI
rs1047440 Weight
rs1077393 Weight
rs10835211 Weight
rs1350341 Weight
rs1350341 Weight
rs17069257 Weight
rs1973993 Weight
rs2115172 Weight
rs2260000 Weight
rs2260000 Weight
rs2844479 Weight
rs2844479 Weight
rs3766431 Weight
rs633265 Weight
rs6477693 Weight
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Supplementary Table 2 Continued

Suppl y Table 2 Continued

Risk SNP Trait Publication
1510769908 BMI
1510769908 BMI
rs10838738 BMI
rs10838738 BMI
1510938397 BMI
rs10938397 BMI
rs11084753 BMI
rs11084753 BMI
rs11084753 BMI
rs11773921 BMI
rs12324805 BMI
rs1421085 BMI
rs1439845 BMI
rs17700144 BMI
rs17782313 BMI
rs17782313 BMI
152145270 BMI Willer et al. 2009
152145270 BMI
152245715 BMI
152815752 BMI
152815752 BMI
152815752 BMI
154752856 BMI
rs6548238 BMI
rs6548238 BMI
rs6548238 BMI
156907460 BMI
rs7181095 BMI
157498665 BMI
157498665 BMI
15752238 BMI
rs9931989 BMI
159939609 BMI
159939609 BMI
rs10508503 Obesity
rs11071927 Obesity
rs11956401 Obesity
rs12588659 Obesity
rs12633433 Obesity
rs1326986 Obesity
rs1343772 Obesity
rs1380100 Obesity
rs1396618 Obesity
rs1421085 Obesity
rs1424233 Obesity
rs16829231 Obesity
rs17782313 Obesity
rs1805081 Obesity
rs1858367 Obesity
rs2011946 ObeS!ty Meyere et al. 2009
rs2158044 Obesity
rs2908338 Obesity
rs3026762 Obesity
rs3102841 Obesity
rs413693 Obesity
rs4712652 Obesity
154786847 Obesity
rs6463923 Obesity
rs646839 Obesity
rs6580742 Obesity
rs6796959 Obesity
rs7506051 Obesity
rs7717673 Obesity
rs908078 Obesity
rs9275582 Obesity
rs987052 Obesity

Risk SNP Trait Publication
rs10433903 Extreme Obesity
rs10999409 Extreme Obesity
rs12295638 Extreme Obesity
rs12492816 Extreme Obesity
rs12635698 Extreme Obesity
rs1435703 Extreme Obesity
rs2274459 Extreme Obesity
rs374748 Extreme Obesity Cotsapas et al. 2009
rs6110577 Extreme Obesity
rs6726292 Extreme Obesity
rs7474896 Extreme Obesity
rs7603514 Extreme Obesity
rs9366829 Extreme Obesity
rs9941349 Extreme Obesity
rs999943 Extreme Obesity
rs10085177 Waist Circumference
rs11970116 Waist Circumference
rs13116494 Waist Circumference
2245667 Waist Circumference
rs4737325 Wa!st C!rcumference Lindgren et al. 2009
rs6429082 Waist Circumference
rs7194591 Waist Circumference
rs7826222 Waist Circumference
rs7970350 Waist Circumference
rs987237 Waist Circumference
rs10096750 BMI
rs10145154 BMI
rs10146997 BMI
rs10150332 BMI
rs10173167 BMI
rs10188334 BMI
rs10189761 BMI
rs10190052 BMI
rs10193244 BMI
rs10511835 BMI
rs10813208 BMI
rs10852521 BMI
rs10871777 BMI
rs10875982 BMI
rs10969478 BMI
rs11075985 BMI
rs11075987 BMI
rs11075989 BMI
rs11075990 BMI
rs11127483 BMI
rs11127484 BMI
rs11127485 BMI Heard-Costa et al.
rs11127491 BMI 2009
rs11152213 BMI
rs11169176 BMI
rs1121980 BMI
rs11520442 BMI
rs11642841 BMI
rs11660783 BMI
rs11662368 BMI
rs11663816 BMI
rs11664883 BMI
rs11665563 BMI
rs12002080 BMI
rs12149832 BMI
rs12446228 BMI
rs12623218 BMI
rs12714414 BMI
rs12714415 BMI
rs12954782 BMI
rs12955983 BMI
rs12957347 BMI
rs12960928 BMI
rs12964203 BMI
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Suppl y Table 2 Continued

Risk SNP Trait Publication
rs12966550 BMI
rs12967135 BMI
rs12969709 BMI
rs12970134 BMI
rs12992154 BMI
rs12995480 BMI
rs13007080 BMI
rs13007086 BMI
rs13012571 BMI
rs13021737 BMI
rs1320330 BMI
rs1320331 BMI
rs1320336 BMI
rs1320337 BMI
rs1320338 BMI
rs13386517 BMI
rs13386627 BMI
rs13386964 BMI
rs13388043 BMI
rs13393304 BMI
rs13396935 BMI
rs13397165 BMI
rs13401686 BMI
rs13415094 BMI
rs1350341 BMI
rs1421085 BMI
rs1456404 BMI
rs1457489 BMI
rs1477196 BMI
rs1539952 BMI
rs1553754 BMI
rs1555967 BMI
rs1558902 BMI
rs1619975 BMI Heard-Costa et al.
rs1673518 BMI 2009
rs17109256 BMI
rs17175643 BMI
rs17201502 BMI
rs17299673 BMI
rs17700144 BMI
rs17782313 BMI
rs17817288 BMI
rs17817449 BMI
rs17817964 BMI
rs1861866 BMI
rs1861867 BMI
rs1942860 BMI
rs1942863 BMI
rs1942866 BMI
rs2051311 BMI
rs2051312 BMI
rs2058908 BMI
rs2168708 BMI
rs2168711 BMI
rs2206277 BMI
rs2288278 BMI
rs2331841 BMI
2397026 BMI
rs2860323 BMI
rs2867108 BMI
rs2867109 BMI
rs2867110 BMI
rs2867112 BMI
rs2867113 BMI
rs2867122 BMI
rs2867123 BMI
rs2867125 BMI
rs2867131 BMI
rs2903492 BMI

Risk SNP Trait Publication
rs2947411 BMI
rs297924 BMI
rs34341 BMI
rs3751812 BMI
rs3751813 BMI
rs3928247 BMI
rs4045166 BMI
rs4299252 BMI
rs4423631 BMI
rs4438957 BMI
rs4452188 BMI
rs4613321 BMI
rs4615388 BMI
rs4620360 BMI
rs474112 BMI
rs475134 BMI
rs476828 BMI
rs4783819 BMI
rs4784323 BMI
rs4793927 BMI
rs4854344 BMI
rs4854348 BMI
rs4854349 BMI
rs487720 BMI
rs489693 BMI
rs492443 BMI
rs497353 BMI
rs5017300 BMI
rs5017303 BMI
rs521663 BMI
rs523288 BMI
rs536783 BMI
rs538656 BMI
o479 BMI Heard-Costa et al.
rs559623 BMI 2009
rs562622 BMI
rs563726 BMI
rs565239 BMI
rs565970 BMI
rs571312 BMI
rs574988 BMI
rs589850 BMI
rs590215 BMI
rs591166 BMI
rs611428 BMI
rs633265 BMI
rs649721 BMI
rs6499640 BMI
rs6548237 BMI
rs6567155 BMI
rs6567160 BMI
rs6567161 BMI
rs663129 BMI
rs666181 BMI
rs6711012 BMI
rs6719518 BMI
rs6719980 BMI
rs6725549 BMI
rs6728726 BMI
rs6731348 BMI
rs6731688 BMI
rs6732471 BMI
rs6734363 BMI
rs6742576 BMI
rs6743060 BMI
rs6744646 BMI
rs6744653 BMI
rs6745266 BMI
rs6752470 BMI
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Risk SNP Trait Publication
rs6755502 BMI
rs681630 BMI
rs682614 BMI
rs683430 BMI
rs7022642 BMI
rs7132908 BMI
rs7138803 BMI
rs7144011 BMI
rs7185735 BMI
rs7190492 BMI
rs7193144 BMI
rs7201850 BMI
rs7202116 BMI
rs7203521 BMI
rs7205986 BMI
rs7206010 BMI
rs7206790 BMI
rs7240566 BMI
rs7338657 BMI
rs7561317 BMI
rs7567570 BMI
rs7570198 BMI
rs7571957 BMI
rs7574359 BMI
rs7576624 BMI
rs7576635 BMI
rs7585056 BMI
rs7587786 BMI
rs7604609 BMI
rs7608050 BMI
rs7715806 BMI
rs7831920 BMI
rs8043757 BMI Heard-Costa et al.
rs8044769 BMI 2009
rs8047395 BMI
rs8050136 BMI
rs8051591 BMI
rs8055197 BMI
rs8057044 BMI
rs8083289 BMI
rs8086627 BMI
rs8089364 BMI
rs8091524 BMI
rs8095404 BMI
rs921971 BMI
rs939582 BMI
rs939583 BMI
rs953442 BMI
rs975918 BMI
rs981106 BMI
rs981113 BMI
rs987237 BMI
rs9922047 BMI
rs9922619 BMI
rs9922708 BMI
rs9923147 BMI
rs9923233 BMI
rs9923544 BMI
rs9928094 BMI
rs9930333 BMI
rs9930501 BMI
rs9930506 BMI
rs9931494 BMI
rs9932754 BMI
rs9935401 BMI
rs9936385 BMI
rs9937053 BMI
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Risk SNP Trait Publication
rs993887 BMI
rs9939609 BMI
rs9939973 BMI
rs9940128 BMI
rs9940646 BMI
rs9941349 BMI
rs10059683 Waist Circumference
rs10066756 Waist Circumference
rs10068332 Waist Circumference
rs10146690 Waist Circumference
rs10150482 Waist Circumference
rs10869557 Waist Circumference
rs10869558 Waist Circumference
rs10869559 Waist Circumference
rs11778132 Waist Circumference
rs11780082 Waist Circumference
rs11857639 Waist Circumference
rs11990688 Waist Circumference
rs12271537 Waist Circumference
rs12274672 Waist Circumference
rs12475139 Waist Circumference
rs12792768 Waist Circumference
rs13404551 Waist Circumference
rs1447905 Waist Circumference
rs1521252 Waist Circumference
rs16930931 Waist Circumference
rs17008958 Waist Circumference
rs17061143 Waist Circumference
rs17109221 Waist Circumference
rs17476669 Waist Circumference
rs17537900 Waist Circumference
rs17836088 Waist Circumference
rs2164210 Waist Circumference
rs2236783 Waist Circumference
rs2322659 Waist Circumference Heard-Costa et al.
rs2322660 Waist Circumference 2009
rs2365642 Waist Circumference
rs2370982 Waist Circumference
rs303211 Waist Circumference
rs309134 Waist Circumference
rs309137 Waist Circumference
rs309160 Waist Circumference
rs309168 Waist Circumference
rs4098360 Waist Circumference
rs4420638 Waist Circumference
rs4701252 Waist Circumference
rs4758213 Waist Circumference
rs4758215 Waist Circumference
rs507824 Waist Circumference
rs569406 Waist Circumference
rs6499641 Waist Circumference
rs6714750 Waist Circumference
rs6716536 Waist Circumference
rs6754311 Waist Circumference
rs6817633 Waist Circumference
rs6837818 Waist Circumference
rs6870971 Waist Circumference
rs687670 Waist Circumference
rs693895 Waist Circumference
rs6998794 Waist Circumference
rs7110070 Waist Circumference
rs7156625 Waist Circumference
rs745500 Waist Circumference
rs748841 Waist Circumference
rs7579771 Waist Circumference
rs7824886 Waist Circumference
rs7932813 Waist Circumference
rs8059991 Waist Circumference
rs892715 Waist Circumference
rs9598518 Waist Circumference
rs9790104 Waist Circumference
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Risk SNP Trait Publication
rs1024889 BMI
rs1152846 BMI
rs12517906 BMI
rs1458095 BMI
rs1878047 BMI
rs1927702 BMI
rs2383393 BMI
rs3803915 BMI
rs3803915 BMI
rs3934834 BMI
rs4085400 BMI
rs824931 BMI
15875283 BMI Johansson et al. 2009
rs10844154 Weight
rs10972341 Weight
rs10972350 Weight
rs1152846 Weight
rs12517906 Weight
rs1570885 Weight
rs1816002 Weight
rs1840440 Weight
rs2765086 Weight
rs4879869 Weight
rs7209395 Weight
rs7919006 Weight
rs965178 Weight
152275215 BMI Liu et al. 2010
rs10458787 BMI
rs11127485 BMI
rs1558902 BMI
rs9935401 BMI
rs10926984 Obesity
rs12145833 Obesity
rs2783963 Obesity
rs11127485 Obesity Scherag et al. 2010
rs17150703 Obesity
rs13278851 Obesity
rs516175 Obesity
rs1558902 Obesity
rs9935401 Obesity
rs17700144** Obesity

DW Belsky et al.

Supplementary Table 2 Continued

Risk SNP Trait Publication
rs1558902 BMI
rs2860323 BMI
rs6567160 BMI
rs10938397 BMI
rs10767664 BMI
rs543874 BMI
rs2815752 BMI
rs10182181 BMI
rs12444979 BMI
rs7498665 BMI
rs987237 BMI
rs2241423 BMI
rs9816226 BMI
rs7138803 BMI
rs2287019 BMI
rs1514177 BMI
rs13107325 BMI
rs2112347 BMI
rs10968576 BMI
rs3817334 BMI
153810291 BML Speliotes et al. 2010
rs887912 BMI
rs10150332 BMI
rs7640855 BMI
rs11847697 BMI
rs2890652 BMI
rs11165643 BMI
rs4771122 BMI
rs4836133 BMI
rs4929949 BMI
rs29938 BMI
rs9296115 BMI
rs2922763 BMI
rs2444217 BMI
rs867559 BMI
rs3764400 BMI
rs255414 BMI
rs6955651 BMI
rs17016663 BMI
rs6477694 BMI
rs2652594 BMI
rs2035935 BMI

Supplementary Table 2 Footnote: *Reported as "SNP_A-2284869" and crosswalked to rs ID using the

Affy 6.0 SNP name to rs ID crosswalk file "GenomeWideSNP_6.na30.annot.csv"; **The GWAS catalog
reports rs10871777 (in LD with rs17700144 at R*=0.85) as the obesity-associated SNP near the gene
MC4R in Scherag et al. SNPs are reported only once per GWAS. Associations are reported for BMI where
present and for other phenotypes where BMI was not investigated or the SNP was not associated with

BMI at p<1 x10~
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Supplementary Table 3. Replicated and/or Genome-Wide Significant LD Blocks Identified in 3-Stage
Approach Analyses. LD blocks were defined from LD analyses of risk SNPs (genotype-phenotype
association at p<1x10°) using data from the HapMap version 3 CEU sample accessed via Seattle SNPs's
Genome Variation Server and an LD threshold of R%>0.95. Replication was evaluated as the number of
GWAS reporting any SNP in the block as a risk SNP. Genes were evaluated within 100kb in either
direction from an LD block's outermost SNPs.

Mean
Number of

Identified Replicated Replications
Chromsome LD Blocks LD Blocks  (All Blocks) Genes
1 4 3 2.0 NEGR1, TNNI3K, PTB2, SEC16B
2 6 2 2.0 LRP1B, TMEM18
3 3 0 1.0 CADM_2, ETV5/DGKG
4 2 1 1.5 GNPDA2, SLC39A8
5 2 0 1.0 POC5, ZNF608
6 1 1 3.0 TFAP2B
9 2 1 1.5 LINGO2/LRRN6C, LMX1B
11 7 0 1.0 RPL27A, BDNF, MTCH2
12 1 1 3.0 BDCDIN3D/FAIM2/NCKAP5L
13 1 0 3.0 MTIF3, GRF3A
14 2 1 1.5 PRKD1, NRXN3
15 1 0 1.0 MAP2K5
16 26 14 3.0 GRP5B, ATXN2L/TUFM/SH2B1, FTO
18 7 7 2.6 MC4R
19 4 1 1.3 KCTD15, ZC3H4, QPCTL, TMEM160

12
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Supplementary Table 4. Characteristics of Replicated and/or Genome-Wide Significant LD Blocks

DW Belsky et al.

13

LD Block GWAS Publication
Any SNP in
Chromosomal Space Covered Seed SNPs (risk SNPs in LD with all risk SNPs in  Block Genome-
Chrom- by All Risk SNPs in the LD block at R220A95) // Proxy SNPs (risk SNPs in LD Wide
osome Block (NCBI Build 36) Nearby Genes with any seed SNP at R220.95) Significant [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]
72,523,773 - 72,585,028 NEGR1 rs2568958, rs2815752, rs3101336 Yes X X X
1 74,763,990 TNNI3K rs1514177 Yes X
96,696,685 - 96,716,582 PTBP2 rs11165643 // rs1973993 Yes X X
176,156,103 - 176,180,142 SEC16B rs10913469, rs543874 Yes X X
604,168 - 643,874 TMEM18 see footnote Yes X X X X
604,210 - 643,874 TMEM18 Yes X X X X
2 624,905 TMEM18 rs6548238 Yes X
25,003,800 rs10182181 Yes X
59,156,381 rs887912 Yes X
142,676,401 LRP1B rs2890652 Yes X
85,956,854 CADM2 rs7640855 Yes X
3 187,316,984 ETV5/DGKG rs7647305 Yes X
187,317,193 ETV5/DGKG rs9816226 Yes X
4 44,877,284 rs10938397 Yes X X
103,407,732 SLC39A8 rs13107325 Yes X
5 75,050,998 POC5 rs2112347 Yes X
124,360,002 rs4836133 Yes X
6 50,906,485 - 50,911,009 TFAP2B rs2206277, rs987237 Yes X X X
9 28,404,339 LINGO2 rs10968576 Yes X
128,505,146 LMX1B rs867559 p<1><10'5 X X
8,561,169 STK33 rs4929949 Yes X
27,603,861 - 27,626,684 BDNF rs10501087, rs4074134, rs4923461 Yes X
27,636,492 BDNF rs6265 Yes X
1 27,682,562 BDNF rs10767664 Yes X
27,623,778 - 27,623,778 BDNF rs925946 Yes X
47,604,618 - 47,619,625 MTCH2 rs10838738, rs4752856 Yes X
47,607,569 MTCH2 rs3817334 Yes X
12 BDCDIN3D, FAIM2,
48,533,735 NCKAP5L rs7138803 Yes X X X
13 26,918,180 MTIF3, GRF3A rs4771122 Yes X
29,584,863 rs11847697 Yes X
14 rs10145154, rs10150332, rs17109256,
78,961,635 - 79,014,915 NRXN3 rs7144011 // rs10146997, rs10150482,
rs17109221, rs17836088, rs7156625 Yes X X
15 65,873,892 MAP2KS rs2241423 Yes X
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DW Belsky et al.

Supplementary Table 4 Continued

Chromosomal Space Covered

LD Block

Seed SNPs (risk SNPs in LD with all risk SNPs in

Any SNP in
Block Genome-

GWAS Publication

Chrom- by All Risk SNPs in the LD Genes Overlapping LD  block at R220A95) // Proxy SNPs (risk SNPs in LD Wide
osome Block (NCBI Build 36) Block/ 10kb of SNP*  with any seed SNP at R220.95) Significant [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]
19,841,101 GPRC5B rs12444979 Yes X
28,745,016 - 28,790,742  ATXN2L, TUFM, SH2B1 rs4788102, rs7498665, rs8049439 Yes X X X
52,312,678 - 52,327,178 FTO rs6499640, rs7203521, rs7206010 Yes X X
52,355,409 FTO rs7206790 Yes X
52,356,024 - 52,361,841 FTO rs8047395 //rs1861866, rs8055197 Yes X
rs1861866, rs8055197 // rs10852521,
52,356,024 - 52,363,781 FTO rs8047395, rs9922047 Yes X
rs10852521, rs9922047 // rs11075987,
52,360,657 - 52,372,662 FTO rs1861866, rs8055197 Yes X
52,362,466 - 52,372,662 FTO rs11075987 // rs10852521, rs9922047 Yes X
52,365,265 FTO rs17817288 Yes X
52,370,115 FTO rs8057044 Yes X
52,396,636 FTO rs8044769 Yes X X
52,357,008 - 52,366,748 FTO rs11075985, rs9940646 // rs1121980,
rs9923147, rs9923544, rs9928094, rs9930333,
rs9937053, rs9939973, rs9940128 Yes X X X X
rs1121980, rs9923147, rs9923544, rs9928094,
52,357,008 - 52,384,680 FTO ;j9930333, rs9937053, rs9939973, rs9940128
rs11075985, rs1421085, rs1558902,
rs7201850, rs9931494, rs9940646, rs9941349 Yes X X X X X X X X
52,357,008 - 52,385,567 FTO rs1421085, rs1558902 // rs17817964,
rs7185735, rs7193144, rs7202116, rs9937053 Yes X X X X X X
rs7201850, rs9931494, rs9941349 //
rs1121980, rs9922619, rs9922708, rs9923147,
52,357,008 - 52,389,272 FTO rs9923544, rs9928094, rs9930333, rs9930501,
16 rs9930506, rs9932754, rs9937053, rs9939973,
rs9940128 Yes X X X X X
rs17817964, rs7185735 // rs11075989,
52,358,455 - 52,400,409 FTO rs11075990, rs12149832, rs1421085,
rs1558902, rs17817449, rs3751812,
rs7193144, rs7202116, rs8043757, rs8050136,
rs8051591, rs9923233, rs9935401, rs9939609 Yes X X X X X X X X
rs7193144, rs7202116 // rs11075989,
52,361,075 - 52,400,409 1O rs11075990, rs12149832, rs1558902,
rs17817449, rs17817964, rs3751812,
rs7185735, rs8043757, rs8050136, rs8051591,
rs9923233, rs9935401, rs9939609 Yes X X X X X X X
rs11075989, rs11075990, rs17817449,
rs3751812, rs8043757, rs8050136, rs8051591,
52,368,187 - 52,385,567 FTO rs9923233, rs9935401, rs9939609 //
rs17817964, rs7185735, rs7193144,
rs7202116, rs9936385 Yes X X X X X X
52,368,187 - 52,400,409 FTO rs12149832 // rs17817964, rs7185735,
rs7193144,rs7202116 Yes X X X
52,376,670 - 52,377,378 FTO rs9936385 // rs11075989, rs9923233 Yes X
rs9922619, rs9922708, rs9930501, rs9932754
52,379,363 - 52,389,272 FTO // rs7201850, rs9930506, rs9931494,
rs9941349 Yes X X X
52,382,989 - 52,389,272 FTO rs9930506 // rs9922619, rs9922708,
rs9930501, rs9931494, rs9932754, rs9941349 Yes X X X
52,406,062 FTO rs1861867 Yes X
52,357,888 - 52,386,253 FTO
rs12446228, rs1477196, rs4783819, rs7190492 Yes X X
52,376,209 FTO rs3751813 Yes X
52,402,988 FTO rs11642841 Yes X

14




Supplement to Development & Evaluation of a Genetic risk score for Obesity DW Belsky et al.

Supplementary Table 4 Continued

LD Block GWAS Publication
Any SNP in
Chromosomal Space Covered Seed SNPs (risk SNPs in LD with all risk SNPs in  Block Genome-
Chrom- by All Risk SNPs in the LD Genes Overlapping LD  block at R220A95) // Proxy SNPs (risk SNPs in LD Wide
osome Block (NCBI Build 36) Block/ 10kb of SNP*  with any seed SNP at R220.95) Significant [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]
55,962,962 MC4R rs17700144 p<1><10'6 X X X

rs10871777, rs11152213, rs12967135,
rs17782313, rs2168711, rs476828, rs523288,
55,980,115 - 56,003,928 MC4R rs538656, rs571312, rs6567160, rs663129 Yes X X X X X

rs1350341, rs1619975, rs1673518, rs2051311,
rs2051312, rs2331841, rs474112, rs475134,
rs487720, rs536783, rs545708, rs559623,
rs562622, rs565239, rs565970, rs574988,
rs589850, rs591166, rs611428, rs649721,
rs6567161, rs666181, rs681630, rs682614,
rs683430, rs975918, rs993887 // rs521663,
55,964,628 - 56,003,732 MC4R rs633265 p<1x10® X X

rs12960928 // rs11663816, rs11664883,
18 rs11665563, rs12954782, rs12969709,
rs12970134, rs1457489, rs17175643,
56,009,782 - 56,048,783 MC4R rs492443, rs8083289, rs8089364, rs921971 Yes X X

rs921971 // rs11663816, rs11664883,
rs11665563, rs12954782, rs12955983,
rs12960928, rs12964203, rs12966550,
rs12969709, rs12970134, rs1457489,
rs17175643, rs2168708, rs492443, rs8083289,
56,009,782 - 56,062,310 MC4R rs8089364 Yes X X

rs12955983 // rs11663816, rs11664883,
rs11665563, rs12954782, rs12969709,
rs12970134, rs1457489, rs17175643,
56,009,809 - 56,047,722 MC4R rs8083289, rs8089364, rs921971 Yes X X

rs11663816, rs11664883, rs11665563,
rs12954782, rs12964203, rs12966550,
rs12969709, rs12970134, rs1457489,
rs17175643, rs2168708, rs8083289, rs8089364

56,009,809 - 56,062,310 MC4R // rs12955983, rs12960928, rs921971 Yes X X
39,001,372 - 39,003,321 KCTD15 rs29938, rs29941 Yes X X
19 39,013,977 KCTD15 rs11084753 Yes X
52,260,843 ZC3H4, TMEM160  rs3810291 Yes X
50,894,012 QPCTL rs2287019 Yes X

Supplementary Table 4 Footnote: GWAS are numbered as follows: [1] Frayling et al. 2007, Science; [2] Scuteri et al. 2007,
PLoS Genetics; [3] Fox et al. 2007, BMC Medical Genetics; [4] Hinney et al. 2007, PLoS One; [5] Liu et al. 2008, Human
Molecular Genetics; [6] Loos et al. 2008, Nature Genetics; [7] Thorleifsson et al. 2009, Nature Genetics; [8] Willer et al.
2009, Nature Genetics; [9] Meyere et al. 2009 Nature Genetics; [10] Cotsapas et al. 2009, Human Molecular Genetics;
[11] Lindgren et al. 2009 PLoS Genetics; [12] Heard-Costa et al. 2009, PLoS Genetics; [13] Johansson et al. 2009, Obesity;
[14] Liu et al. 2010, Twin Research and Human Genetics; [15] Shcerag et al. 2010, PLoS Genetics; Speliotes et al. 2010,
Nature Genetics. LD Blocks were defined using an R* threshold of 0.95. Genes are reported within 100 kb of any seed
SNP. Italicized genes fall outside the 100kb range, but contain SNPs in LD with a block seed. GWAS are indicated as
replicating a block if they reported a SNP in LD at R*>0.95 with a block seed or proxy as associated with an obesity-

related phenotype at p<1x107 in either their discovery or combined discovery and replication samples.

Block 2.2: (seeds) rs10173167, rs10188334, rs10189761, rs10190052, rs10193244, rs11127484, rs11127485,
rs11127491, rs12714414, rs12714415, rs12992154, rs12995480, rs13007080, rs13007086, rs13012571, rs13021737,
rs1320331, rs1320336, rs1320337, rs1320338, rs13386517, rs13386627, rs13386964, rs13388043, rs13393304,
rs13396935, rs13397165, rs13401686, rs13415094, rs2860323, rs2867108, rs2867109, rs2867110, rs2867112,
rs2867113, rs2867122, rs2867125, rs2903492, rs2947411, rs4423631, rs4452188, rs4613321, rs4854344, rs4854348,
rs4854349, rs5017300, rs5017303, rs6711012, rs6719518, rs6719980, rs6725549, rs6728726, rs6731348, rs6731688,
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rs6732471, rs6734363, rs6743060, rs6744646, rs6744653, rs6752470, rs6755502, rs7561317, rs7567570, rs7570198,
rs7571957, rs7574359, rs7576624, rs7576635, rs7585056, rs7604609, rs7608050, rs939582, rs939583

Block 2.3: (seeds) rs2867123, (proxies) rs10173167, rs10188334, rs10189761, rs10190052, rs10193244, rs11127484,
rs11127485, rs11127491, rs12714414, rs12714415, rs12992154, rs12995480, rs13007080, rs13007086, rs13012571,
rs13021737, rs1320331, rs1320336, rs1320337, rs1320338, rs13386517, rs13386627, rs13386964, rs13388043,
rs13393304, rs13396935, rs13397165, rs13401686, rs13415094, rs2860323, rs2867108, rs2867109, rs2867110,
rs2867112, rs2867113, rs2867122, rs2867123, rs2867125, rs2903492, rs4423631, rs4452188, rs4613321, rs4854344,
rs4854348, rs4854349, rs5017300, rs5017303, rs6711012, rs6719518, rs6719980, rs6725549, rs6728726, rs6731348,
rs6731688, rs6732471, rs6734363, rs6743060, rs6744646, rs6744653, rs6752470, rs6755502, rs7561317, rs7567570,
rs7570198, rs7571957, rs7574359, rs7576624, rs7576635, rs7585056, rs7604609, rs7608050, rs939582, rs939583
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Supplementary Table 5. Effect Sizes for Genetic Risk Scores Created Using the 3-Stage Approach and
the Best-Guess and Top-Hits Approaches. To measure BMI effect sizes for the GRSs, we estimated
Pearson correlations ( r ) from separate linear regressions of BMI on each of the GRSs. To measure
obesity effect sizes for the GRSs, we estimated odds ratios (OR) from separate logistic regressions of
obesity on each of the GRSs. Regression models were adjusted for age (linear and quadratic terms),
gender, the age-gender interaction, and the ARIC Study Centers where data were collected. In Panel A,
the Best-Guess GRS was based on the GRS published by Li and colleagues (Li et al. 2010) and the Top-
Hits GRS was based on the GRS published by Peterson and colleagues (Peterson et al. 2011). In Panel B
the Best Guess GRS was based on the full set of obesity- and BMI-associated SNPs listed in the NHGRI
GWAS Catalog and the Top-Hits GRS was based on the GRS published by Speliotes and colleagues
(Speliotes et al. 2010). ***p<0.001. Comparison of effect sizes using the seemingly unrelated regression
method (Baltagi 1980) indicated that effect sizes for the 3 GRSs in Panel A were not statistically different
from one another (p-value for difference >0.10 for all), but that among the GRSs in Panel B, the 3-stage
approach performed better than the Best-Guess and Top-Hits GRSs (p<0.05 for all). However, our
sample had only 40% power to detect effect size differences of r=0.01 / OR=1.01, so this result should be
interpreted with caution.

’

Effect Sizes

BMI Obesity
Approach to GRS Pearson Correlation Odds Ratio
Construction SNPs (r) [95% Cl]

Panel A. GRSs Constructed from Results of 9 GWAS Published by
December 31, 2008

3-Stage 28 0.08*** 1.08 [1.06-1.10]
Best-Guess 12 0.08%** 1.08 [1.06-1.11]
Top-Hits 59 0.06%** 1.07 [1.04-1.09]

Panel B. GRSs Constructed from Results of the Full Set of 16 GWAS

3-Stage 57 0.11%** 1.12 [1.10-1.15]
Best-Guess 97 0.10%*** 1.11[1.09-1.13]
Top-Hits 32 0.10%** 1.10[1.08-1.12]
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Supplementary Table 6. Analysis of Loci with Multiple Tag SNPs. * "Lead SNP" is underlined; "Worst-
associated SNP" is italicized; Test statistics and effect sizes were estimated in linear regression models of
BMI adjusted for demographics and geography. "Lead SNPs" and "Worst-associated SNPs" were
determined from the test statistics for the individual SNPs. Effect sizes were compared using the
seemingly unrelated regressions method (Baltagi 1980).

Effect Size (Pearson's r)
p-value for comparison with lead SNP
Minimum R Mean Number of
ARIC SNPs Tagging LD Among Tag Worst-Associated BMI-Increasing
Locus Blocks in Genic Region SNPs Lead SNP SNP Alleles
chr 2 TMEM18 rs10189761, rs2867123, 0.04 0.027 0.023 0.025
rs4854345 p=0.276 p=0.371
Chr 3 ETV5/DGKG 0.85 0.007 Q! 0.018
rs12516728, rs9863591 p=0.721 p=0.427
Chr 11 BDNF rs10501087, rs7103411, 0.86 0.027 WK 0.026
rs6265, rs11030108 p=0.124 p=0.485
0.020 0.019 0.020
Chr 11 MTCH rs12419692, rs3817334 0.77
p=0.871 p=0.878
rs1477196,rs17817288,
rs1121980, rs9922047,
7 4012 0.072 0.034 0.068
Chr 16 FTO rs9939973, rs9940128, 0.40
rs9941349, rs7193144,
rs7203521, rs9939609,
rs8050136, rs9930506 p<0.001 p=0.104
rs476828 ,rs1673518,
rs17782313, rs11663816 0.026 0.019 0.025
Chr 18 MC4R ’ ! 0.25
r rs11665563, rs12969709,
rs12970134 p=0.158 p=0.062
0.010 0.009 0.009
Chr 19 KCDT15 rs29942 ,rs11084753 0.58
p=0.879 p=0.913
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Supplementary Table 7. SNPs Included in the Obesity Genetic Risk Score.

White Participants, n=8,210-8,8,286 Black Participants, n=2,402-2,442
Direction of Direction of
Effect- Association Association
GWAS BMl-Increasing Test Other Size Test Allele Per Allele Inconsistent | Test Allele Per Allele Inconsistent
Chr Nearby Gene Tag SNP Replications  Allele in GWAS Alelle Allele Weight | Frequency Change in BMI p-value with GWAS Frequency Changein BMI p-value with GWAS
NEGR1 rs2815752 3 Major G A 0.13 38% -0.259 0.001 45% -0.071 0.673
1 TNNI3K rs1514175 1 Minor A G 0.07 43% -0.001 0.985 68% -0.091 0.608 X
PTBP2 rs1555543 2 Major A C 0.06 42% -0.128 0.086 57% -0.031 0.855
SEC16B rs543874 2 Minor G A 0.22 20% 0.341 0.000 25% 0.335 0.095
FANCL rs759250 1 Minor A G 0.10 29% 0.036 0.656 8% -0.242 0.475 X
P LRP1B rs2121279 1 Minor T C 0.08 14% 0.234 0.032 3% -0.253 0.651 X
TMEM18 rs2867123 5 Major G C 0.30 17% -0.237 0.018 12% 0.022 0.935 X
RBJ rs10182181 1 Minor G A 0.14 46% 0.117 0.117 84% 0.758 0.001
3 CADM2 rs12714640 1 Minor A C 0.10 19% 0.278 0.003 6% 0.006 0.987
ETV5/DGKG rs1516728 2 Major T A 0.11 23% -0.060 0.489 52% -0.098 0.565
4 GNPDA2 rs12641981 2 Minor T C 0.18 43% 0.088 0.238 23% 0.103 0.602
SLC39A8 rs13114738 1 Minor T C 0.13 8% 0.506 4.15E-04 1% -1.583 0.008 X
5 POCS FLI35779 rs10057967 1 Major C T 0.10 37% -0.227 0.003 49% 0.128 0.435 X
ZNF608 rs6864049 1 Minor G A 0.07 46% -0.189 0.012 X 19% -0.463 0.033 X
6 TFAP2B rs734597 3 Minor A G 0.13 17% 0.382 1.21E-04 9% 0.030 0.920
9 LINGO2 LRRN6C rs1412235 1 Minor C G 0.11 31% 0.003 0.970 16% 0.365 0.111
LMX1B rs867559 2 Minor G A 0.24 20% 0.088 0.339 32% 0.025 0.889
RPL27A rs2028882 1 Major c A 0.06 50% -0.065 0.375 66% 0.116 0.515 X
11 BDNF rs10501087 2 Major C T 0.18 21% -0.223 0.013 7% -0.521 0.181
MTCH2 rs12419692 2 Minor A C 0.05 36% 0.146 0.059 9% 0.012 0.968
12 BDCDIN3D, FAIM2 rs7138803 3 Minor A G 0.12 38% 0.164 0.033 17% 0.100 0.650
13 MTIF3, GRF3A rs1475219 1 Minor C T 0.09 21% 0.262 0.004 22% -0.099 0.632 X
14 PRKD1 rs1440983 1 Minor A G 0.15 5% 0.266 0.129 23% 0.156 0.449
NRXN3 rs7144011 2 Minor T G 0.13 22% 0.165 0.064 24% 0.164 0.428
15 MAP2K5 rs28670272 1 Major G A 0.13 23% -0.212 0.014 41% 0.005 0.977 X
GPR5B rs11639988 1 Major G A 0.17 15% 0.006 0.952 X 24% -0.262 0.194
16  ATXN2L, TUFM, SH2B1 rs12443881 3 Minor T C 0.15 39% -0.005 0.948 X 9% -0.607 0.030 X
FTO rs9939609 11 Minor A T 0.38 41% 0.496 8.19E-11 48% 0.129 0.443
18 MC4R rs12970134 6 Minor A G 0.21 26% 0.209 0.012 13% 0.057 0.822
KCTD15 rs11084753 3 Major A G 0.04 33% -0.071 0.371 36% 0.197 0.270 X
19 QPCTL rs11083779 1 Major C T 0.07 4% -0.227 0.196 11% -0.267 0.294
ZC3H4 TMEM160 rs7250850 1 Major G C 0.09 29% -0.174 0.032 80% -0.343 0.124

Supplementary Table 7 Footnote: GWAS replications include GWAS reporting any SNP in any LD block tagged by the SNP as obesity-associated at
p<1x10~ in the discovery or combined discovery and replication samples. Test allele and other allele are reported from the positive strand.
Effect-size weights were obtained from (Speliotes et al. 2010) for all SNPs with the exception of rs867559, for which the effect size weight was
obtained from (Thorleifsson et al. 2009). Allele frequencies and per-allele effects are reported based on all participants in the analysis sample.
Per-allele effects were estimated from linear regressions of BMI on SNP genotype (number of minor alleles), adjusted for demographics and
geography. P-values are reported based on heteroskedasticity robust standard errors.
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Supplementary Table 8. Educational Attainment of White and African American ARIC Participants.
Educational attainment was ascertained via self-report at the first ARIC visit. Distributions of BMI-
increasing alleles for the 32 obesity GRS SNPs were comparable across educational strata in African

Americans and whites (p>0.10 for all comparisons).

Highest Level of Schooling
None/ Grade School

Some High School

High School Graduate
Vocational School

College

Graduate/ Professional School

Percent of Visit 1 Sample

5%
11%
36%

9%
30%

9%

19%
21%
22%

7%
18%
14%
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Supplementary Table 9. Predictiveness of Model-Based Risk Scores With and Without The Obesity Genetic Risk Score. (m1-5) denote separate
models used to estimate risk scores for BMI and obesity. Risk scores were predicted values from linear regression of BMI and predicted
probabilities from probit regressions of obesity. The first model, m1, includes measures of age, sex, and ARIC Study Center where data were
collected. The regression model was specified to include linear and quadratic terms for age and a product term modeling interaction between
age and sex. The simple genetic risk assessment (SNPs in FTO and downstream of MC4R) is a component of the weighted obesity genomic risk
score. Thus, model m3 contains all of the information in model m2 as well as information from the remaining 30 SNPs included in the GRS. The 5
categories of socioeconomic status were modeled as dichotomous variables and were allowed to vary by sex in their relationship with obesity
and BMI. Values of R* were estimated using linear regression models adjusted for demographic and geographic information. Percentile-based
confidence intervals were generated using the bootstrap method. AUCs and percentile-based confidence intervals were estimated from ROC
curves constructed for predicted values generated using a probit regression model and were adjusted for the ARIC Study Center where data
were collected using Pepe’s method (Janes and Pepe 2009; Pepe, Longton, and Janes 2009). IDIs and test statistics were estimated only for
comparisons of models m3 and m2 and models m5 and m4 using Pencina's Method (Pencina et al. 2008). IDIs for comparisons of models m2 and
m3 with model m1 are identical to those reported for the respective obesity risk measures in Table 4 of the article.

White ARIC Participants (n=8,286) Black ARIC Participants (n=2,442)

Model Model Components R’ (95% Cl) AUC (95% CI)  IDI (p-value) R’ (95% CI)  AUC(95% CI) IDI (p-value)
(m1) Demographic & Geographic

Information 3.20% 0.526 5.17% 0.604
(m2) m1 + Simple Genetic Risk

Assessment 3.88% 0.550 5.35% 0.607
(m3)  m1l+ Weighted GRS 4.88% 0.574 5.52% 0.609

Change in predictiveness with 1.00% 0.024 0.006 0.17% 0.002 0.001

addition of the weighted GRS (0.006-0.014) (0.012-0.036) (7.81E-13) (-0.001-0.005)  (-0.005-0.009) (0.055)
(m4) m1 + Socioeconomic Status 4.70% 0.550 7.70% 0.643
(m5)  m4 + Weighted GRS 6.20% 0.586 7.92% 0.645

Change in predictiveness with 1.50% 0.036 0.010 0.22% 0.002 0.002

addition of the weighted GRS (0.010-0.020) (0.023-0.050) (5.46E-19) (-0.001-0.006)  (-0.003-0.008) (0.012)

21



Supplement to Development & Evaluation of a Genetic risk score for Obesity

15

.05

15

.05

White Women White Men

Black Women Black Men
T /\ T T T A T T
10 20 30 40 50 10 20 30 40 50

Distribution of BMI-Increasing Alleles for the 32 GRS SNPs

White Women White Men
Black Women Black Men

2 3 4 5 6 2 3 4 5

Distribution of Weighted 32 SNP Genomic Risk Score

DW Belsky et al.

Supplementary Figure 1. Distributions of BMI Increasing Alleles for the 32 GRS SNPs and the Weighted

Obesity Genomic Risk Score Among White and African American ARIC Participants. Variance of the

obesity genomic risk scores (GRS) was similar among women and men within ethnicity (p>0.15 for both

samples), but was greater among whites as compared to African Americans (p<0.001) according to

Brown and Forsythe’s (Brown and Forsythe 1974) test for equality of variances.
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Test Model with Obesity

17 Genomic Risk Score ;
(AUC=0.609, 95% Cl 0.587-0.631) .
Baseline Model
0 (AUC=0.604, 95% Cl 0.583-0.627)
I I
0 1
1-Specificity

Supplementary Figure 2. Receiver Operating Characteristic Curves for Obesity Among African
American ARIC Participants (n=2,442). Baseline Model = gender, age (quadratic), gender x age
interaction, ARIC study center; Test Model = baseline model + weighted obesity genomic risk score. ROC
Curves were constructed using predicted values from probit regressions of obesity (BMI1230) on the
model terms. Delta AUC (AUCrest-AUCgaseiine) = 0.005, 95% Cl -0.005-0.015, p=0.30. Delta Partial AUC at
80% specificity=0, 95% Cl -0.004-0.004, p=0.97. AUCs, partial AUCs, and delta AUCs were estimated
using Pepe’s method (Janes and Pepe 2009; Pepe, Longton, and Janes 2009).
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