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THE BIGGER PICTURE Although DNA methylation data are used widely by researchers in many fields, the
reliability of these data are surprisingly variable. Our findings remind us that, in an age of increasingly big
data, research is only as robust as its foundations. We hope that our findings will improve the integrity of
DNA methylation studies. We also hope that our findings serve as a cautionary reminder for those gener-
ating and implementing big data of any type: reliability is a fundamental aspect of replicability. Conducting
analysis with reliable data will improve chances of replicable findings, which might lead to more actionable
targets for further research. To the extent that reliable data improve replicability, the knock-on effect will be
more public confidence in research and less effort spent trying to replicate findings that are bound to fail.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
DNA methylation plays an important role in both normal human development and risk of disease. The most
utilized method of assessing DNA methylation uses BeadChips, generating an epigenome-wide ‘‘snapshot’’
of >450,000 observations (probemeasurements) per assay. However, the reliability of each of thesemeasure-
ments is not equal, and little consideration is paid to consequences for research. We correlated repeat mea-
surements of the same DNA samples using the Illumina HumanMethylation450K and the InfiniumMethylatio-
nEPIC BeadChips in 350 blood DNA samples. Probes that were reliably measured were more heritable and
showed consistent associations with environmental exposures, gene expression, and greater cross-tissue
concordance. Unreliable probes were less replicable and generated an unknown volume of false negatives.
This serves as a lesson forworkingwithDNAmethylation data, but the lessons are equally applicable towork-
ing with other data: as we advance toward generating increasingly greater volumes of data, failure to docu-
ment reliability risks harming reproducibility.
INTRODUCTION
 of genetic function without changes to DNA sequence. This
DNA methylation is an epigenetic mechanism that occurs by the

addition of amethyl (CH3) group to DNA, resulting inmodification
This is an open access article und
mechanism plays an important role in human development and

disease, primarily by regulating gene expression.1 Because of

the modifiable nature of epigenetic influence, research into
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DNAmethylation has heralded a new era in the elusive search for

the route by which the external world might ‘‘get under the

skin.’’2 By its very nature, this question spans multiple disci-

plines; geneticists,3 biologists,4 computational scientists,5 neu-

roscientists,6 social scientists,7 and philosophers8 have been

drawn to massive new data about the epigenome with an eye to-

ward how it might explain health, disease, and our very nature.

The promise of the epigenetics revolution has been sweeping.

In humans, DNA methylation occurs at specific sites across

the genome (almost exclusively CpG sites, where a cytosine

nucleotide is located next to a guanidine nucleotide), and there

exist hundreds of thousands of such sites. Advances in technol-

ogies for quantifying site-specific DNA methylation have aided

an explosion of research aimed at identifying associations be-

tween numerous environmental exposures, disease processes,

and methylomic variation.9–12 One such measurement technol-

ogy, the Infinium BeadChip produced commercially by Illumina,

has fueledmuch of the research in epigenetic epidemiology. This

platform was developed to simultaneously assay thousands of

DNA methylation targets in the genome. The relative ease of

use, low cost, and modest sample requirements of this technol-

ogy have enabled a new generation of researchers to add DNA

methylation to their research programs, which only a few years

ago would have posed an insurmountable challenge. We are

among this new generation. This article reports our experience,

excitement, and frustration, as a team of multidisciplinary scien-

tists, trying to understand and use these data.

When we began to produce DNA methylation data, we re-

viewed the literature for best-practice information and guidelines

to ensure the highest validity and downstream reproducibility. It

was at this point we realized there was no consensus. We had

generated data using the Infinium Methylation450 (450K) Bead-

Chip, the gold standard for epigenome-wide DNA methylation

data. This provides�450,000 measurements per individual sub-

ject. However, we learned that a significant proportion of the

thousands of data points do not yield the equivalent value

when quantified twice from the same DNA sample.13,14 This sit-

uation is compounded by the nature of our work, which involves

repeated measurement of individuals studied longitudinally. This

in itself raises an additional complication: measurement

methods become obsolete and are superseded by new,

improved products. In this case, the 450K BeadChip was

recently replaced by the Infinium MethylationEPIC (EPIC) Bead-

Chip, which containsmost of the content (approximately 93%) of

the 450K BeadChip augmented with probes covering an addi-

tional �400,000 CpG sites. Published research has suggested

that at the array level, DNA methylation values generated using

both iterations of Illumina DNAmethylation BeadChips are highly

correlated, yielding correlations >0.9;15–18 however, the reli-

ability of individual-level probe measurements between the two

arrays varies substantially. Using DNA derived from blood

collected from 145 adults, one study17 observed that reliability

correlations between probes on the 450K and EPIC BeadChip

ranged from �0.34 to 0.95 with a median value of 0.15, and

only 2.6% of the �420,000 probes assayed had reliability corre-

lations above 0.8. Using DNA derived from blood collected from

109 newborns and 86 adolescents, a second study18 observed

similarly low correlations (median r = 0.23, only �10% of probes

with correlations >0.8).
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These aforementioned reports documented patterns of un-

even reliability in the repeated measurement of DNA methyl-

ation.13,14,17,18 However, we were not prepared for the scarcity

of information documenting the consequences of these patterns;

consequences that, if shown to affect inferences made from

DNA methylation data, would have widespread implications for

reproducibility. Most research studies treat the�450,000 obser-

vations as ‘‘equals,’’ each as likely as the next to report true bio-

logical differences from a statistical point of view. However, to

uncover consistent, replicable signals of DNA methylation dy-

namics, be it over time, between populations, or between expo-

sures, measurement reliability is crucial. Analysis of probes that

cannot be repeatedly measured with precision has the potential

to yield irreproducible findings borne from spurious associa-

tions, and, just as importantly, may miss discoveries.

Here we share how we went about learning of the cross-disci-

plinary data challenges of high-throughput DNA methylation

data and discuss the implications of these challenges for data

processing, analysis, algorithm generation, and interpretation.

Our goal is to promote communication about careful practices

for working with the new data being generated in this important

field.

We first performed test-retest measurement assessments to

quantify the reliability of DNA methylation data. We assessed

probe reliability between the two types of BeadChips using

data on 350 DNA samples measured twice; once using the

450KBeadChip and again using the EPICBeadChip. The individ-

uals are participants in the E-Risk Study, a birth cohort of 2,232

twins born in 1994–1995 in the United Kingdom. DNA methyl-

ation was measured at age 18 years, when participants contrib-

uted whole blood for DNA analysis. Probe reliability was defined

as the intraclass correlation (ICC) between repeat measures of

individual probe b values measured on the two BeadChips. We

then assessed the impact of differential reliability on numerous

lines of enquiry of interest to many researchers, ourselves

included. First, we tested how reliability influenced the ability

to detect genetic and environmental effects on the epigenome

through (1) analysis of heritability in the E-Risk twin sample and

(2) analysis of methylation quantitative trait loci (mQTLs) identi-

fied in genome-wide association studies (GWAS) of DNAmethyl-

ation. Second, we tested the implications of differential reliability

for association testing by analyzing results of epigenome-wide

association studies of tobacco smoking, one of themost harmful

health risks in the modern world.19 Third, we tested the implica-

tions of differential reliability for epigenetic biomarker develop-

ment by analyzing multi-probe-algorithm-based measurements

that are intended to capture information about aging (i.e.,

‘‘DNA methylation clocks’’). Finally, we tested the implications

of differential reliability in ascribing biological function to DNA

methylation by assessing the impact of reliability on (1) correla-

tions between DNA methylation and gene expression and on

(2) correlations between levels of DNA methylation measured

in blood tissue and brain tissue.

RESULTS

Reliability of CpG Probes Is Low and Highly Variable
We use ‘‘reliability’’ to refer to the reproducibility of methylation

probes’ values. We measured probe values twice from the
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same DNA source (DNA was sourced from a single blood draw

via a single extraction). One set of measures was made using

the 450K BeadChip, the other set using the EPIC BeadChip.

Our analysis was restricted to probes found on both platforms

(438,593 probes).

Probe reliabilities were computed using ICCs calculated for

each of the 438,593 autosomal probes present on both the

EPIC and 450K BeadChips that passed quality control. ICCs

are an oft-used metric to assess reliability in test-retest situa-

tions,20 and many different models exist depending on the way

in which the test-retest data are generated. Here, we calculated

ICCs based on amean-rating (k = 2), absolute-agreement, 2-way

random-effectsmodel.We chose thismodel using the guidelines

outlined by Koo and Li,20 where mean-rating (k = 2) relates to the

number of repeated measures (i.e., BeadChips per sample); ab-

solute agreement requires that not only do the values across

BeadChips correlate but that values are in agreement; and 2-

way random effects relates to the generalizability of the ICCs

to any subsequent similarly characterized rater (where rater =

BeadChip probe).

ICCs between probes ranged from �0.28 to 1.00 (Supple-

mental Information, Section 1.1; Figure S1; Data S1). Probe reli-

abilities were skewed toward zero, with amean of 0.21 (median =

0.09). This is low reliability considering that, in the context of es-

tablishing reliable measurement, ICCs below 0.4 are considered

‘‘poor,’’ those between 0.4 and 0.6 are considered ‘‘fair,’’ be-

tween 0.6 and 0.75 ‘‘good,’’ and above 0.75 ‘‘excellent.’’21

The reliabilities that we observed in our data were highly corre-

lated with the reliabilities observed by Logue et al.,17 who also

compared probes across 450K and EPIC BeadChips (r = 0.86,

p < 0.01, Supplemental Information, Section 1.1; Figure S2).

This suggests that the low reliabilities that we observed across

the arrays are reproducible in other datasets. Importantly, the

low reliabilities that we observed were unlikely to be solely due

to differences between 450K and EPIC BeadChip probes. First,

previous studies have documented similar low reliabilities in

450K-450K probe comparisons13,14 and EPIC-EPIC probe com-

parisons.17 Second, we conducted EPIC-EPIC array compari-

sons for a subset of Dunedin Study samples (n = 28) (for compar-

ison purposes, we restricted analysis to the �440,000 probes

overlappingwith the 450K array as described throughout this pa-

per). Several noteworthy details emerged. (1) The median reli-

ability in our EPIC-EPIC comparison was 0.26. This is higher

than the median reliability (0.09) observed in our 450K-EPIC

comparisons, but still falls squarely in what is considered to be

‘‘poor’’ reliability.21 (2) It is not clear what accounts for the higher

EPIC-EPIC reliability; it could be due to consistency of the plat-

form or it could be due the fact that, unlike probes for the 450K-

EPIC comparisons, probes for the EPIC-EPIC were assayed at

the same time, using the same reagents, equipment, and so

forth. (3) The correlations between the EPIC-EPIC reliabilities

estimated by us in the Dunedin Study with the 450K-EPIC reli-

abilities (estimated by us in the E-Risk Study) was 0.77 (Fig-

ure S3). (4) When performing the analyses set forth in this manu-

script using EPIC-EPIC ICCs rather than 450K-EPIC ICCs, we

arrive at the same conclusions: we found that, like between-

array reliability, within-array reliability is low, skewed toward

zero, and has detrimental effects on research findings, and

that differences in 450K and EPIC BeadChip probes are unlikely
to be the sole cause of between-array unreliability (Supplemental

Information, Section 1.1).

As a sanity check, we also sought to replicate previously

observed associations between reliability and (1) the mean and

standard deviation (SD) of methylation levels (b values)13,14,17

(Supplemental Information, Section 1.2) and (2) the genomic

annotation (location) of probes13,18 (Supplemental Information,

Section 1.3). We observed the same associations as previously

reported. Taken together, this suggests BeadChip-wide differ-

ential reliabilities are reproducible and systematic in pattern.

Previousmethodological studies have drawn attention to three

factors that might compromise the quality of methylation Bead-

Chip data: probe invariance,22–24 potential probe hybridization

problems,25 and skewness.26 We tested whether these features

are sufficient to capture unreliability. They are not. Probe unreli-

ability exists in probes that are variable or do not have potential

probe hybridization problems, and probe reliabilities calculated

on b values resemble the reliabilities of M values, a method for

transforming skewed probe distributions26 (Supplemental Infor-

mation, Section 1.4).

In summary, we replicated previous reports of low reliability

across probes common to the 450K and EPIC BeadChips,

demonstrating that, paradoxically, poor reliability is reproduc-

ible. Moreover, factors commonly thought to account for unreli-

ability (such as invariance) do not provide a satisfactory account

of its ubiquity.

Evaluating the Consequences of Unreliable Probe
Measurements
Our data suggest that the majority of probes we tested have low

test-retest reliability. We now examine the practical implications

of this observation for epigenetic research by applying our 450K-

EPIC reliabilities to the results of previously published epigenetic

studies. In all cases, these previously published studies were

based on data derived using 450K BeadChips because (1) the

EPIC BeadChip is relatively new, and most published research

is based on the 450K BeadChip, (2) the probes common to the

EPIC and 450K BeadChips reflect almost all (�93%16) of the

probes unchanged from the 450K BeadChip, and (3) earlier

450K-450K comparisons showed patterns of reliabilities similar

to those of the 450K-EPIC comparison.13,14

Estimates of Genetic and Environmental Effects on DNA

Methylation Are Affected by Unreliable Measurement

Genetic and environmental effects on a phenotype can be esti-

mated by comparing the relative phenotypic differences be-

tween monozygotic (MZ) and dizygotic (DZ) twins. The assump-

tions behind this model are that additive genetic factors are

perfectly correlated betweenMZ twins (i.e., genetic correlation =

1) but are only 50% correlated between DZ twins (i.e., genetic

correlation = 0.5) and that shared non-heritable influences are

equally similar between MZ and DZ twin pairs. We previously re-

ported the probe-specific genetic and environmental architec-

ture of DNA methylation.24 Using our twin design, we decom-

posed variation in each probe into three variance components:

additive genetic effects (labeled ‘‘A’’), shared environmental ef-

fects (‘‘C’’; environmental effects that each twin in a twin pair

share, making twins more similar to each other), and non-shared

(or unique) environmental effects (‘‘E’’; environmental effects that

are specific to each twin within a pair, making twins less similar to
Patterns 1, 100014, May 8, 2020 3



Figure 1. Density Heatmap of Probe Reliability Plotted against Esti-

mates of Genetic and Environmental Effects on DNA Methylation

(A) Additive genetic effects (denoted as ‘‘A’’), (B) shared environmental effects

(denoted as ‘‘C’’), and (C) non-shared (or unique) environmental effects (de-

noted as ‘‘E’’). The variance component is plotted on the x axis and the reli-

ability is plotted on the y axis. Probes with the highest reliability have the

highest value of A and lowest value of E. Density is depicted on a spectral scale

from low (dark blue) to high (red).
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each other). Figure 1 shows the association between probe reli-

ability and estimates of A (Figure 1A), C (Figure 1B), and E (Fig-

ure 1C). Reliability was significantly correlated with higher herita-

bility (r = 0.70, p < 0.01, Figure 1A). In contrast, low-reliability

probes tended to be suffused with more non-shared environ-

mental variance (r = �0.58, p = 1.00, Figure 1C). Given that the

non-shared environmental variance component in biometric

models also includes measurement error, these probes are

possibly less likely to reflect true environmental effects than

they are to reflect unreliable measurement. (The correlation be-

tween reliability and estimates of shared environmental variance

[C] was low, r = �0.07, possibly reflecting the fact that the clas-

sical twin design has limited power to identify precise estimates

of shared environmental influence.27)

We further examined how unreliability affects discovery

research about the genetic etiology of DNAmethylation. A recent

GWAS of DNA methylation identified �55,000 methylation

mQTLs, DNA sequence variants that are associated with differ-

ential DNA methylation.28 Figure 2 shows that the reliability of

probes indexed by mQTLs in our data (N = 50,900) is higher

than the reliability of probes that are not (N = 387,693).

In summary, given that a significant proportion of probes are

suffused with unreliability (as indicated by poor test-retest reli-

ability and as further indexed by high E-components in biometric

models), the ability to detect associations between DNA methyl-

ation levels and genetic influences will be compromised.

Probe Reliability Affects Association Testing

We hypothesized that reliability is related to the likelihood that

associations between environmental exposures and specific

probes would replicate across independent studies. To test

this, we focused on one of the most robust findings in epigenetic

epidemiology: the effect of tobacco smoking on DNA methyl-

ation. We identified 22 studies that reported an epigenome-

wide analysis of current versus never smoking using the 450K

BeadChip platform12,29–34 (Table S4). For each study, we ob-

tained lists of probe IDs and direction of effect for probes that

were significantly associated with current smoking (as deter-

mined by the study authors; total number of probes = 3,724;

number of probes per study = 84–2,441). We then determined

the extent to which individual probes replicated across the 22

studies by summing the number of times each probe was listed

with consistent direction of effect (i.e., consistent cross-study in-

creases or decreases in methylation in response to smoking).

The number of individual replications across studies was associ-

ated with reliability (r = 0.52, p < 0.001, Figure 3). The mean num-

ber of replications for low-reliability probes (here defined as reli-

ability <0.4) was 6.84 (median = 1, SD = 6.78, n = 1,630 probes),

whereas the mean for high-reliability probes (reliability >0.75)

was 13.1 (median = 15, SD = 5.11, n = 391 probes).

In summary, the likelihood of replicating associations between

exposures and DNA methylation probes is significantly greater

when studying reliable probes. Unreliable probes are likely to

generate false positives and to mask true associations and are

less likely to be reproducible.

Publicly Available DNA Methylation Aging Algorithms

Contain Unreliable Measurements

There is enormous interest in developing and applying algo-

rithms that use DNA methylation to index biological aging.35 A

critical component of the success of these ‘‘DNA methylation



Figure 2. The Distribution of Reliabilities of

Probes Identified in a Large-Scale mQTL

Analysis Compared with Non-mQTL Probes

Distributions are depicted as box-and-whisker plots

of the reliability coefficients of the probes identified

as having mQTLs (‘‘mQTL’’) and the remainder not

included in the mQTL list (‘‘no mQTL’’). Boxes

correspond to interquartile range (IQR), and whis-

kers extend to 1.5 3 IQR. Observations beyond the

whiskers (outliers) are represented by individual

points. As a reference, the distribution (pink bars)

and median (vertical dashed line) of all �440,000

probe reliabilities in the E-Risk dataset is shown

above the box-and-whisker plots. The text box

shows the results of gene set enrichment analysis

(GSEA; NES, normalized enrichment score; N,

number of probes); probes associated with mQTLs

are enriched for reliable probes, suggesting that

reliable probe measurement is important for un-

covering genetic effects on methylation.

ll
OPEN ACCESSArticle

Please cite this article in press as: Sugden et al., Patterns of Reliability: Assessing the Reproducibility and Integrity of DNA Methylation Measurement,
Patterns (2020), https://doi.org/10.1016/j.patter.2020.100014
clocks’’ is that probes comprising the algorithms are reliably

measured so that they might be applied to any external dataset.

We tested the hypothesis that these algorithms are more likely to

capture reliable probes than unreliable probes. Figure 4 shows

the distribution of probe reliabilities for three established DNA

methylation aging-associated clocks: (1) the ‘‘Hannum clock,’’36

(number of probes = 63), (2) the ‘‘Horvath clock’’37 (number of

probes = 334), and (3) the ‘‘Levine clock’’38 (number of probes =

512; the number of probes reflects those available in our data).

Each aging algorithm had median probe reliabilities higher than

that of the background distribution. However, the distribution

for all three algorithms was not solely composed of reliable

probes; each algorithm contained many probes whose b values

were unreliable.

In summary, externally validated DNA methylation algorithms

are generally composed of reliable probes. However, their per-

formance could be improved by utilizing more reliable DNA

methylation measurements. This perhaps emphasizes the point

that algorithms of this type necessitate careful, extensive

external validation; we hypothesize that algorithms over-repre-

sented by unreliable probes will, by their very nature, fail to

perform well under varied testing situations.

Reliability Influences the Association between DNA

Methylation and Gene Expression

A goal of epigenetic discovery is to assign biological meaning to

the observed patterns of DNA methylation (e.g., Schubeler2 and

Teschendorff and Relton39). To this end, we tested the hypothe-

sis that DNAmethylation probes with higher reliability were more

likely to index variation in gene expression, the process by which

the information encoded in a gene is used to direct the assembly

of a protein molecule. We used two approaches.

First, we used the results of global DNA methylation-gene

expression correlation patterns described by Kennedy et al.,40

wherein 36,485 and 114,536 unique DNA methylation probes

were associated with gene expression across two cohorts

(GTP and MESA, respectively; p < 1 3 10�5). Figure 5A shows

that these significantly correlated methylation probes were

more likely to be reliable (median reliability in GTP = 0.21, propor-

tion of these probes with reliability >0.75 = 11.2%; median reli-
ability in MESA = 0.20, proportion of these probes with reliability

>0.75 = 10.1%; gene set enrichment analysis [GSEA] enrichment

p < 1 3 10�4 in each) than methylation probes that were not

discovered to be related to gene expression. Furthermore,

probes that were significantly correlated with gene expression

in both datasets had higher reliabilities than those identified in

only one dataset (median reliability = 0.36 versus 0.17, propor-

tion of probes with reliability >0.75 = 14.7% versus 9.4% for

both datasets versus one dataset, respectively; GSEA enrich-

ment p < 13 10�4). This suggests that reliability of DNA methyl-

ation probes influences the ability to detect correlates of biolog-

ical function in a reproducible manner.

Second, using gene expression data available in the Dunedin

Study, we calculated the correlation between gene expression

probeset values with DNA methylation b values for every CpG

probe localized to the transcription start site (TSS) of that

gene. We restricted analysis to probes within the TSS, as these

are hypothesized to have direct effects upon expression of the

localized gene. As shown in Figure 5B, DNA methylation probes

that significantly correlated with expression probesets (a = 1 3

10�7, n = 278) had significantly higher reliabilities than DNA

methylation probes that did not (n = 23,261; median reliability

of correlated probes = 0.64, proportion of these probes with reli-

ability >0.75 = 36.0%; median reliability of non-correlated

probes = 0.04, proportion of these probes with reliability

>0.75 = 3.4%; Figure 5C).

In summary, DNA methylation probes were more likely to

correlate with transcriptional variation if they were reliably

measured. Reliable probes are more likely to index reproducible

biological correlates, whereas unreliable probes may mislead

about biological function.

Reliability Influences the Concordance of Blood and

Brain Methylation Levels

Most epidemiological investigations into exposure-related dif-

ferential DNA methylation are undertaken using DNA derived

from whole blood. This is an expedient choice due to the relative

ease of collecting blood in population-based studies. However,

many exposures in which epidemiologists are interested are hy-

pothesized to have their effects (or consequences) in other
Patterns 1, 100014, May 8, 2020 5



Figure 3. Probes Consistently Associated with Smoking across

Studies Have Higher Reliabilities Than Probes that Are Not

We identified 22 epigenome-wide association studies of smoking and DNA

methylation. For ease of visualization, probes have been binned into three

groups representing 1–7 replications (pink), 8–14 replications (green), and 15–

22 replications (blue). The values above the x axis represent the number of

probes per group. In the 1–7 replication bin, the highest density of probes was

at the low-reliability end of the distribution, and the median reliability (as de-

picted by the median line of the box plot within the violin) was the lowest of the

three groups. Boxes correspond to IQR and whiskers extend to 1.5 3 IQR.
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tissues, such as the brain, raising the question of whether periph-

eral blood is a problematic surrogate tissue. Previously, we eval-

uated the similarity of methylation levels between bloodDNA and

DNA from four brain regions (prefrontal cortex, entorhinal cortex,

superior temporal gyrus, and cerebellum) using the 450K Bead-

Chip, and showed that only a small proportion of probes

measured in blood correlate with methylation levels in the

brain.41

We hypothesized that these small numbers of probes that reg-

ister similar levels of DNA methylation in blood and brain tissue

would be over-represented by high-reliability probes. To test

this, we cross-referenced the correlations between DNAmethyl-

ation levels in blood and each of four brain regions (‘‘blood-brain

concordance’’) with our 450K-EPIC probe reliabilities. Blood-

brain concordance was related to reliability (rho = 0.22–0.38,

p < 0.01 across the four brain regions). Figure 6 shows the distri-

bution of reliability across low- (<0.4), mid- (0.4–0.75), and high-

concordance (>0.75) probes in four brain regions. Median reli-

abilities for probes with low blood-brain concordance were

0.08 regardless of brain region, while median reliabilities for

probes with high blood-brain concordance were 0.90 across

the four brain regions. Moreover, probes that showed high

blood-brain concordance in all four brain tissues were the

most reliable (median reliability = 0.92, number of probes =
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6,774, proportion of these probes with reliability >0.75 =

78.7%) while probes that had low blood-brain concordance in

each of the four brain tissues were the least reliable (median reli-

ability = 0.08, number of probes = 397,091, proportion of these

probes with reliability >0.75 = 3.1%).

In summary, reliable probes aremore likely to exhibit cross-tis-

sue concordance in DNA methylation. Unreliable probes may be

less likely to prove useful in developing blood-based biomarkers

of brain dysregulation.

DISCUSSION

The reliability of probe-level DNA methylation measurement is

highly variable across the �440,000 sites indexed on the 450K

and EPIC BeadChips. This differential reliability has detrimental

downstream implications: it undermines published research

and masks potential new discoveries.

First, we demonstrated that detection of both environmental

and genetic effects on DNA methylation is related to differential

probe reliability. The extent to which DNA methylation responds

to environmental influences is under intense investigation and is

thought to be one route via which environmental exposures ‘‘get

under the skin.’’2 There is also much interest in the relationship

between DNA sequence variation and DNA methylation.23,24

Here, we showed that the most reliable probes tend to be under

significant genetic influence, whereas the least reliable probes

are suffused with non-shared environmental variation (which

also includes variation arising due to measurement error). These

findings suggest that for a proportion of sites that indicate high

sensitivity to environmental input, identification of true signal

might be hindered by the relatively higher probability of impre-

cise measurement and that insights into the genetic basis of

methylation may be missed due to the poor reliability of DNA

methylation.

Second, we demonstrated the implications of differential reli-

ability for epigenome-wide association testing. To achieve this

we focused on tobacco smoking, one of themost replicable find-

ings in epigenetic epidemiology. Here we showed that the likeli-

hood of replication across studies increases with probe reli-

ability. We also showed how unreliable probes may slow

biomarker discovery. Arguably, ‘‘DNA methylation clocks’’

have been one of the major success stories of epigenetic epide-

miology.36–38 We found that these clocks are enriched for reli-

able probes but that the algorithms also contain noisy measure-

ments, and it is possible that applying machine learning to

uniformly reliable data will improve precision in this and

other areas.

Third, we demonstrated the implications of differential reli-

ability for integrating DNA methylation data with sequence and

transcriptomic data. Here we showed that probe reliability is

necessary to accurately estimate genetic contributions to DNA

methylation, to identify gene expression correlates, and to

detect correlated DNA methylation signatures across tissues. If

the goal is robust and replicable biological inference from site-

specific DNA methylation, it is necessary to restrict analysis to

those probes that can be reliably measured.

There are some caveats to this study. First, these findings are

restricted to DNA derived from blood. However, findings

described here will be of use to the majority of researchers in



Figure 4. Reliabilities of Probes Included in

Established, Publicly Available DNA Methyl-

ation Algorithms (‘‘Clocks’’)

Distributions are depicted as box-and-whisker plots

of the reliability coefficients of the probe constitu-

ents of the Hannum et al.36 aging clock (63 probes),

Horvath37 DNAmAge clock (334 probes), and Levine

et al.38 biological aging clock (512 probes). Boxes

correspond to IQR and whiskers extend to 1.5 3

IQR. Observations beyond the whiskers (outliers)

are represented by individual points. As a reference,

the distribution (pink bars) and median (vertical

dashed line) of all �440,000 probe reliabilities in the

E-Risk dataset is shown above the box-and-

whisker plots. The aging clocks are enriched for

reliable probes (values to the right of the figure; NES,

normalized enrichment score; N, number of

probes). Median reliabilities of probes included in

aging clocks are higher than those of the general

distribution; however, each algorithm contained

many unreliable probes.
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epigenetic epidemiology and to researchers looking for clinical

application of epigenetic findings, since blood is the most com-

mon substrate from which DNA is derived and biomarkers are

developed. Second, our study comprises young adults; it is

possible that age-related change in DNA methylation at certain

sites in the genome influences the pattern of reliability. That

said, the pattern of reliability coefficients observed in our study

is consistent with that seen in newborns,18 14-year-olds,18 and

�30-year-olds.17 Third, findings are restricted to the �440,000

probes common to both the 450K and EPIC BeadChips. Howev-
the Dunedin Study dataset. Probes that were significantly correlated with gene ex

(C) Distribution of reliabilities of these significantly correlated DNA methylation pro

normalized enrichment score; N, number of probes); DNA methylation probes

reliable probes.
er, Logue et al.17 reported similar reliability distributions for EPIC-

EPIC comparisons in 11 individuals and we found better, but

overall poor reliability for EPIC-EPIC comparisons in our data

as well. Moreover, for the probes overlapping the two arrays,

the EPIC-EPIC reliabilities were highly correlated with the

450K-EPIC reliabilities. The reason we emphasize between-

array probe comparisons is that the goal of many researchers’

work is to both make discoveries and replicate discoveries

made by others. Given rapid advances in technologies and the

proliferation of available data, it is increasingly the case that
Figure 5. Reliabilities of Probes Significantly

Correlated with Gene Expression Have

Higher Reliabilities Than Non-correlated

Probes

(A) Distributions of the reliability coefficients of the

probes identified as correlated with gene expres-

sion by Kennedy et al.40 in the GTP and MESA co-

horts (N probes = 36,485 and 114,536, respec-

tively). Probes that are correlated with gene

expression in both cohorts are shown in the bottom-

most box-and-whisker plot. Boxes correspond to

IQR and whiskers extend to 1.5 3 IQR. As a refer-

ence, the distribution (pink bars) and median (verti-

cal dashed line) of all �440,000 probe reliabilities in

the E-Risk dataset is shown above the box-and-

whisker plots. The text box shows the results of

GSEA for the GTP cohort, MESA cohort, and the

intersection of both cohorts (NES, normalized

enrichment score; N, number of probes). Each co-

hort’s set of significantly correlated DNA methyl-

ation probe-gene expression pairs is enriched for

reliable probes; pairs that are significantly corre-

lated in both datasets are further enriched.

(B) TSS-localized DNA methylation probe-gene

expression probeset correlation (x axis) plotted

against DNA methylation probe reliability (y axis) in

pression are shown in pink (n = 278) and those not correlated are shown in blue.

bes as a box-and-whisker plot. The text box shows the results of GSEA (NES,

that were significantly correlated with expression probesets are enriched for
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Figure 6. Violin Plots of the Distribution of

Reliability in Probes with Low (<0.4, Pink),

Medium (0.4–0.75, Green), and High (>0.75,

Blue) Blood-Brain Correlation in DNA

Methylation

Distributions are shown across four brain regions:

prefrontal cortex (A), entorhinal cortex (B), superior

temporal gyrus (C), and cerebellum (D). Number of

probes per group is listed above the x axis. Box-

and-whisker plots of the distribution are plotted

within violin plots. Values below each violin corre-

spond to the number of probes in that group.

Probes with high blood-brain concordance are

concentrated at the high-reliability end of the dis-

tribution. Boxes correspond to IQR and whiskers

extend to 1.5 3 IQR.
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researchers need to integrate data that have been created using

different arrays; indeed, although the 450K chip is no longer

available, the vast bulk of DNA methylation research to date

has used this array. As such, an important challenge for data sci-

entists is how to integrate data from different arrays, whether this

is in the service of evaluating targets for further scientific interro-

gation or in meta-analysis (e.g., one needs to knowwhether pub-

lished results generated by 450K data are generalizable to new

EPIC data and, ultimately, whether EPIC data will be generaliz-

able to new technologies in future). In this case, between-array

reliability is the relevant metric.

Taken together, at the very least unreliable probes are uninfor-

mative. At worst, they hinder scientific progress. In the GWAS

world, much has been done to improve replicability of research,

from increasing sample sizes to standardizing data pipelines

(e.g., Visscher et al.42). In the epigenetic world, researchers

have adopted many similar considerations (e.g., Lehne et al.43

and Yan et al.44), but unreliability in the quantitative measure-

ment of DNA methylation is a unique challenge. We list possible

responses below.

First, to approximate reliable measurements, it is possible to

filter data based on intrinsic properties of probes, such as invari-

ance or hybridization properties. However, restricting analysis to

variant probes or to probes without sequence-related perfor-

mance issues is not sufficient to guarantee reliability; we found

that these probes were not uniformly reliable (Supplemental In-

formation, Section S1.4). Furthermore, restricting analysis to

only variant probes conveys no enhancement of power to detect

associations between reliability and (1) estimates of genetic and

environmental influences on DNAmethylation, (2) mQTL probes,

and (3) concordance in DNA methylation levels between blood

and brain tissue (Supplemental Information, Section S2). Sec-

ond, it is possible to return to the practice, once routine, of using
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alternative technologies such as pyrose-

quencing to perform post-analysis valida-

tion of positive DNA methylation findings.

This approach comes with two caveats,

one of which is that it can only detect false

positives; false negatives would remain

undetected. A second caveat is that as

science is shifting toward a culture of

open-access and publicly available data,
more and more researchers are becoming endpoint data users

and as such are not involved in experimental data production.

In this scenario, the task of experimental validation of individual

findings, potentially in the thousands, is resource heavy, logisti-

cally impractical, and financially prohibitive. A third response is

to generate pre-analysis reliability metrics, as we did in this

report. Indeed, for publicly available data, this is currently the

only feasible method of providing individual probe reliability met-

rics to end-users. To aid standardization, we have made avail-

able our reliability metrics for all measured probes (Data S1).

Going forward, we suggest that researchers make the assess-

ment of reliability standard practice when designing and

measuring DNA methylation. This is because, despite evidence

that our individual probe reliabilities correlate highly with those

reliabilities reported previously,17 we do not yet know the full

extent to which demographic (e.g., age), measurement (e.g.,

batch), and source (e.g., tissue) factors may influence measure-

ment reliability. Additionally, specific experimental designs (e.g.,

longitudinal designs and meta-analyses requiring incorporation

of data from different sources, array types and batches, or

cross-sectional single time-point designs) would determine

which type of reliability metric to employ (e.g., within-array

versus between-array); the reliability metrics reported heremight

not be the most suitable. By subsetting our repeated samples

and calculating reliability, we determined that running just 25

replicates will identify 80% of the reliable probes (reliability

>0.75) identified when using 350 replicates (Supplemental Infor-

mation, Section S3.2). Fulfilling this recommendation would

require additional investments during project planning along

with commitment of support from funding agencies. The effort

associated with incorporating reliability assessment into routine

quality control, as we propose, is far outweighed by the benefits

to science from improved replicability. The goal would be, at the
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very least, to report the reliability associated with any probe for

which conclusions are drawn; this will allow readers to make in-

dependent assessments of the confidence in the probe mea-

surements. Even better would be to filter data, before analysis,

on the basis of reliability metrics. Subsetting data in this way

should help reduce false positives (by reducing the probability

of spurious associations) and possibly false negatives. Although

familywise error-rate corrections would not be greatly affected

(e.g., within the data we present here, Bonferroni correction

would reduce the testing threshold from a = 1.14 3 10�7 for

�440,000 probes to a = 1.77 3 10�6 for �28,000 probes with

reliability >0.75), false-discovery-rate corrections may be

affected.

Researchers from diverse disciplines have been drawn by

the promise of DNA methylation as a convenient vector by

which the social environment might exert its effects on an or-

ganism’s biology. They are also drawn to the relative simplicity

of Illumina BeadChip data in both content and comprehensive-

ness. Anecdotally, we have encountered two reactions to the

phenomenon of differential reliability. First, some researchers

have expressed little surprise at its existence, coupled with a

belief in the self-correcting power of the field to purge false

negatives and positives over time. Our response to this is

that better use of intellectual and financial resources might be

made in analysis of data that are pre-validated, rather than

cycling through replication attempts using unreliable measures

that are bound to fail. Second, others have expressed shock

and alarm that this phenomenon exists at all; these researchers

are often new to the field and are not intimately familiar with the

nuances of how data are produced or their biological meaning.

Our response here is that DNA methylation data are not univer-

sally unusable—their suitability for analysis is contextual. Deter-

mination of reliability gives researchers confidence in the data

they are using, be they new adopters, end-users, or seasoned

experts.

Open-access availability of data is accelerating with encour-

agement from journal publishers and funding agencies. More

andmore researchers are using these big data; DNAmethylation

data are only one example of such. End-users rely on providers

to verify the integrity of data, but just because data aremassive in

scale does not preclude the need for careful evaluation of their

precision. The reproducibility crisis in science has drawn atten-

tion to two Rs: reproducibility (the extent to which consistent re-

sults are obtainedwhen an experiment is repeated with the exact

same inputs) and replicability (the extent to which consistent re-

sults are obtainedwhen an experiment is repeated with the same

design but with inputs from other sources). Here, we highlight a

potential third ‘‘R,’’ reliability. Reliability is a fundamental aspect

of replicability. If desired inputs do not yield the same value when

the source differs, replication is impossible. In this sense, test-re-

test reliability is a tool that has widespread applicability to the

entire data-science community, especially where big data are

used. The National Academies of Sciences, Engineering, and

Medicine recently published a report45 on the state of reproduc-

ibility and replicability in science, along with suggestions for

improvement: ‘‘.[(r]esearchers should, as applicable to the spe-

cific study, provide an accurate and appropriate characterization

of relevant uncertainties when they report or publish their

research.’’. Unreliable probe measurement is one such uncer-
tainty. We hope that our findings will improve the integrity of DNA

methylation studies and serve as a cautionary reminder for those

generating and implementing big data of any type.

EXPERIMENTAL PROCEDURES

Full details are provided in Supplemental Information, Section S3.

Samples

We report data from two samples. The Environmental Risk (E-Risk) Longitudi-

nal Twin Study tracks the development of a 1994–1995 birth cohort of 2,232

British children followed to age 18 years.46 The Dunedin Study tracks the

development of a 1972–1973 birth cohort of 1,037 New Zealand children fol-

lowed to age 45 years.47

DNA Methylation

In E-Risk, DNA was derived from peripheral blood drawn at age 18 years. In

Dunedin, peripheral whole blood was drawn at 38 and 45 years. In E-Risk,

DNA from 350 study members was selected for analysis using both Infinium

MethylationEPIC (EPIC; Illumina, CA, USA) and Illumina Infinium HumanMe-

thylation450 BeadChip (450K BeadChip; Illumina). The remainder of the cohort

(n = 1,308) was assayed using the 450K BeadChip only, as previously

described.48 In Dunedin at age 38, DNA from 819 studymembers was assayed

using the 450K BeadChip, as previously described.48 In Dunedin at age 45,

DNA from 28 study members was assayed twice using the EPIC BeadChip.

E-Risk DNAmethylation assays were run by the Complex Disease Epigenetics

Group at the University of Exeter Medical School (UK) (www.epigenomicslab.

com), and Dunedin assays were run by the Molecular Genomics Shared

Resource at the Duke Molecular Physiology Institute, Duke University (USA).

Gene Expression

RNAwas derived from peripheral blood drawn into PAXGene RNA tubes at age

38 years in Dunedin. Expression data were generated from RNA using the Af-

fymetrix PrimeView Human Gene Chip (Affymetrix, CA, USA) by the Duke Uni-

versity Microarray Core Facility. Data quality control and RMA (robust multi-

chip average) normalization were carried out using the affy Bioconductor

package in the R statistical programming environment. After quality control,

expression data were available for 836 individuals.

Probe Reliabilities

Probe reliabilities are computed using intraclass correlation (ICC) estimates,

calculated for each autosomal probe present on both the EPIC and 450K

BeadChip (N = 438,593). ICCs are an oft-used metric to assess reliability in

test-retest situations,20 and many different models exist depending on the

way in which the test-retest data are generated. Here, we calculated ICCs

based on a mean-rating (k = 2), absolute-agreement, 2-way random-effects

model. To compare whether test-retest model choice had an effect on reli-

ability estimates, we also computed Pearson product-moment correlation co-

efficients. Pearson correlation coefficients and ICC estimates of reliability were

highly similar (r = 1.00, p < 1 3 10�4; Figure S9).

Statistical Analysis

All analyses were performed in the R statistical programming environment,

often using Bioconductor packages. Unless otherwise noted, correlations

are reported as Pearson correlation coefficients. Summary statistics, such

as probe mean and SD, were based on the 350 samples processed on the

450K array. GSEA was performed using the fgsea Bioconductor package49

with 10,000 permutations. The proportion of variance in DNA methylation ex-

plained by heritable (A), shared environmental (C), and unshared or unique

environmental (E) factors was estimated using structural equation modeling

implemented with functions from the OpenMx R package.50

DATA AND CODE AVAILABILITY

E-Risk 450K DNA methylation data are accessible from the Gene Expression

Omnibus (accession code GEO: GSE105018). Data from the Dunedin Study

are not publicly available due to lack of informed consent and ethical approval
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for open access, but are available on request by qualified scientists. Requests

require a concept paper describing the purpose of data access, ethical

approval at the applicant’s institution, and provision for secure data access.

We offer secure access on the Duke University, Otago University, and King’s

College London campuses. All data on probe reliability and characteristics

for the 450K-EPIC comparison (Data S1) are available at https://osf.io/

83ucs/. The data underlying analysis of consequences of unreliability on heri-

tability and blood-brain concordance are available from https://www.

epigenomicslab.com/online-data-resources/. Code is available on request

from the corresponding author.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100014.
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 

 

This section relates to Main Text Results section entitled 
 ‘Reliability of CpG probes is low and highly variable’. 

 

1.1 Reliability of CpG probes is low and highly variable. We began by assessing the 
distribution of probe-probe Intraclass Correlations (ICCs, henceforth ‘reliability’) across the 438,593 
probes present on both the 450K and EPIC BeadChips in our data. Probe ICCs ranged from -0.28 to 1.00 
(Data S1, https://osf.io/83ucs/). As shown in Figure S1, probe reliabilities were skewed towards zero, with 
a mean of 0.21 (median = 0.09). This is low reliability considering that, in the context of establishing 
reliable measurement, ICCs below .4 are considered “poor,” those between .4 to .6 are considered “fair”, 
between .6 to .75 “good”, and above .75 “excellent”.1 

 

Figure S1: Distribution of reliability correlations for probes common to the 450K 
and EPIC BeadChips. 

 

Section S1: Describing the landscape of CpG probe reliability 

https://osf.io/83ucs/


Low reliability might arise through experimental factors not related solely to poor probe 
performance. We therefore tested whether the pattern of reliabilities we observed might be due to such 
stochastic processes by comparing our reliabilities against those reported by Logue et al.2, who also 
compared reliabilities of probes across 450K and EPIC BeadChips. The reliabilities were highly correlated 
(r = 0.86, p < 0.01, Figure S2), suggesting the reliabilities are reproducible and systematic in pattern.  

 

Figure S2. Differential probe reliabilities were consistent across studies. The y-axis 
plots probe reliabilities (as ICCs) in the present study, and the x-axis plots the reliabilities 
(as ICCs) reported by Logue et al.. Reliabilities were highly correlated (r = 0.86). 
Reliabilities were derived from comparisons between 450K and EPIC BeadChip. 

 

An additional source of low reliability could be due to between-array (i.e. 450K vs EPIC) 
differences in probe performance. While this is unlikely since previous studies have documented low 
reliabilities in 450K-450K probe comparisons3,4 and EPIC-EPIC probe comparisons2, we nonetheless 
sought to independently determine whether within-array reliability followed similar patterns to between-
array reliability. For this, we created a new reliability dataset comprised EPIC-EPIC (i.e. within-array) 
comparisons for a subset of Dunedin (N = 28) study samples (for comparison purposes, we restricted 
analysis to the ~440,000 probes overlapping with the 450K array as described throughout this 
manuscript). We sought to test if the distribution of reliabilities was similar between these two datasets. 



We found that, like the between-array comparison, reliabilities for the within-array comparison were low 
and skewed towards zero (median = 0.26), and the two sets of reliabilities were significantly correlated 
with one another (r = 0.77, Figure S3). This suggests that differences between 450K and EPIC 
BeadChips are unlikely to be the sole cause of low probe reliability. 

 

Figure S3. Between-array and within-array reliabilities are correlated. The y-axis 
plots the 450K-EPIC probe reliabilities used in the present study, and the x-axis plots 
EPIC-EPIC probe reliabilities from a subset of 28 individuals in the Dunedin Study. 
Reliabilities were highly correlated (r = 0.77), suggesting that unreliable probe 
measurement is systematic. 

 

1.2 Probe-specific characteristics are related to reliability. Next, we tested if probe reliability 
was related to the mean and variance of methylation levels (β-values) at the site measured by the probe. 
Our analysis revealed three findings. First, probe-reliability had an inverse-U shaped relationship with 
mean β-values; the lowest-reliability probes were concentrated at either end of the distribution of 
methylation β-values (i.e. among hyper- and hypo-methylated probes), whereas the highest reliability 
probes were concentrated in the intermediate range of the distribution (Figure S4A). Second, the highest 
density of low reliability probes was found among probes with low β-value SD (Figure S4B). Third, β-
value means and SDs were correlated (r = 0.15, P<0.01), and the most reliable probes were those with 
intermediate levels of methylation that varied most between individuals (Figure S4C). These observations 
confirm earlier reports of differential reliability as a function of site-specific characteristics2-4. 



 

 

 Figure S4: Probe-specific characteristics are related to the distribution of probe reliability. (A) 
shows a density heatmap of mean DNA methylation level (methylation β, range = 0-1; x-axis) plotted 
against reliability (Y-axis). This distribution follows an inverted U-shaped curve, where lowest 
reliabilities tend to be observed where mean β levels are close to either extreme, whereas the highest 
reliability probes were concentrated in the intermediate range of the distribution. (B) shows a density 
heatmap of the standard deviations of DNA methylation (x-axis) plotted against reliability (Y-axis). 
Lowest reliabilities tend to be observed where variation in β-levels is the lowest. (C) shows means (x-
axis) and standard deviations (y-axis) of methylation β-values plotted as a function of reliability (color; 
red = highest, blue = lowest). Methylation β-level means and SDs are correlated (r=0.15, P<0.01) and 
show an inverse-U relationship with variability; the most variable probes tend to have mean levels of 
methylation around the center of the distribution. These variable, intermediately-methylated probes also 
tend to be most reliable.  



1.3 Genomic annotation of probes is related to differential reliability.  Figure S5A shows 
that there are regional differences in the distribution of probe reliability (Data S1). The transcription start 
site (TSS) had the highest aggregation of unreliable probes; the intergenic region had the lowest. In 
addition, CpG islands had a higher aggregation of unreliable probes than CpG shores (Figure S5B), a 
pattern consistent with previous reports4,5.  This could be due to the fact that sites within CpG islands are 
more likely to be unmethylated6 and are therefore more likely to be unreliably measured, or it could be 
because the proportion of Type I Infinium probes in CpG islands is greater than in CpG shores7 (vs. Type 
II; the two probe types differ in the chemistry used to quantify methylation level), and Type I probes are 
more unreliable than Type II4,5 (Figure S5C). 



 



Figure S5: Reliabilities of probes as a function of spatial characteristics. (A) plots 
the distributions of reliability coefficients as box and whisker plots for probes annotated to 
one of six genic regions: transcription start site (TSS), 5’ untranslated region (5’UTR), 3’ 
untranslated region (‘3UTR), coding region, intronic region, and intergenic region. Boxes 
correspond to Inter-quartile range (IQR), and whiskers extend to 1.5 * IQR. Observations 
beyond the whiskers (outliers) are represented by individual points. The TSS has the 
greatest proportion of unreliable probes, the intergenic region the least. (B) shows the 
distribution of reliability coefficients for probes localized to CpG islands or CpG shores. 
Unreliable probes are more common in CpG islands than CpG shores. Also shown is the 
distribution of reliability correlations as a function of Infinium probe type; older Type I 
probes are less reliable than Type II probes (C). This could be due to the fact that sites 
within CpG islands are more likely to be unmethylated and are therefore more likely to be 
unreliably measured, or it could be because the proportion of Type I Infinium probes in 
CpG islands is greater than in CpG shores (vs. Type II; the two probe types differ in the 
chemistry used to quantify methylation level), and Type I probes are more unreliable than 
Type II. As a reference, the distribution (pink bars) and median (vertical dashed line) of all 
~440,000 probe reliabilities in the E-Risk reliability dataset are shown above the box and 
whisker plots. The text box shows the results of Gene Set Enrichment Analysis (GSEA) 

for the each set of features; NES= Normalized Enrichment Score, p= p-value, N = 

number of probes. NESs greater than 1 indicate enrichment for reliable probes. 

 

1.4: Low reliability is not artefactual. Previous methodological studies have drawn attention to 
three factors that might compromise the quality of methylation BeadChip data: probe invariance8-10, 
potential probe hybridization problems11, and skewness. We tested whether these features are sufficient 
to capture unreliability. They are not.  Figure S6A and S6B document that probe unreliability exists in 
probes that are variable, and do not have potential probe hybridization problems.  Figure S6C 
demonstrates that probe reliabilities calculated on β-values resemble the reliabilities of M-values, a 
method for transforming skewed probe distributions12.  



 



Figure S6: The distribution of reliabilities of probes identified as potentially 
problematic in previous studies. Distributions are depicted as box and whisker plots of 
the reliability coefficients of the probes identified as variant/invariant by Edgar et al. (A; 
probes to discard are invariant probes) or having potential hybridization problems as 
described by Naaem et al. (B; probes to discard are probes with hybridization problems). 
Boxes correspond to Inter-quartile range (IQR), and whiskers extend to 1.5 * IQR. 
Observations beyond the whiskers (outliers) are represented by individual points. Both 
variant and non-problematic probe lists (‘probes to keep’) contain unreliable probes, 
suggesting these factors alone are not sufficient to index reliability. As a reference, the 
distribution (pink bars) and median (vertical dashed line) of all ~440,000 probe reliabilities 
in the E-Risk dataset are shown above the box and whisker plots. The text box shows the 
results of Gene Set Enrichment Analysis (GSEA) for the suggested set of probes to keep 
or discard in each situation (NES= Normalized Enrichment Score, p= p-value, N = 
number of probes). NESs greater than 1 indicate enrichment for reliable probes. (C) 
compares the reliability of probes computed using β values against those using M-values. 
Transforming β values to M-values has little effect on estimates of reliability. These three 
methods of accounting for unreliable probe data are not fully satisfactory.  

 

In summary, we replicated previous reports of low reliability across probes common to the 450K 
and EPIC BeadChips, demonstrating that, paradoxically, poor reliability is reproducible. Moreover, factors 
commonly thought to account for unreliability (such as genomic location, invariance and skewness) do not 
provide a satisfactory account of its ubiquity. 

  



This section relates to Main Text Discussion Section:  

‘Approaches to improve replicability via reliability assessment.’ 

We demonstrated that probe reliability is related to various properties of probe measurements 
(e.g. probe variability, section S1.2 above). These observations might lead one to ask: are these 
properties the major drivers of reliability, such that it is unreasonable to assess reliability without their 
adequate consideration?  

We tested this assumption using variability as a case in point. Our reasoning was that If variability 
is the major driver of reliability, then it follows that exclusion of invariant probes should increase the power 
to detect associations between reliability and the factors we outline in the main text of the manuscript. We 
subset our data to only those probes identified as not invariant in blood by Edgar et al.8. We then 
repeated our analysis of a) the association between probe reliability and estimates of genetic and 
environmental influences on DNA methylation, b) the association with mQTL probes, and c) the 
association with the extent of concordance in DNA methylation levels between blood and brain tissue.  

We first tested if the probes identified as invariant by Edgar et al.8 had the same distribution of 
reliabilities as probes that we independently determine as invariant within our own data. As shown in  
Figure S7 (below), the overlap of reliabilities of the probes listed by Edgar et al.8 and probes identified 
within our data is very high, suggesting that characteristics of individual probes (such as probe variance) 
are highly reproducible and unlikely to result from experimental-specific artifacts. As such, we went 
forward to subset our data to only those probes that were not invariant (i.e. ‘variant’) and repeated our 
tests of association outlined above. 

 
 

Section S2: Testing the sensitivity of associations with reliability in light of 

probe variability 



 

Figure S7. Comparison of reliabilities of invariant probes. Distributions are depicted 
as box and whisker plots of the reliability coefficients of the probes identified as invariant 
by Edgar et al., (top box) or identified as invariant based on our own data (bottom box). 
Boxes correspond to Inter-quartile range (IQR), and whiskers extend to 1.5 * IQR. 
Observations beyond the whiskers (outliers) are represented by individual points. The 
distribution of reliability in both sets of invariant probes are similar, suggesting the lists 
are highly conserved across studies. As a reference, the distribution (pink bars) and 
median (vertical dashed line) of all ~440,000 probe reliabilities in the E-Risk dataset are 
shown above the box and whisker plots.  

 

2.1: Associations between probe reliability and estimates of genetic and environmental 
influences on DNA methylation. In our manuscript, we report that estimates of additive genetic variation 
were positively correlated with reliability, and estimates of non-shared environmental variation (which also 
inlcudes measurement error) were negatively associated with reliabilty. 

When restricting analysis to just those probes that are variable, we find little attenuation of the 
association between reliability and these estimates (Table S1, below). It is not purely variability driving 
the associations, since excluding invariant probes does not improve the power to detect associations. 

  



 Table S1. Correlations of reliability and ACE parameters  

 All probes (N = 430,802) 
Variant probes only (N = 

292,127) 
 r 95% CI r 95% CI 

Additive genetic variation (A) 0.702 0.701, 0.0704 0.705 0.703, 0.706 

Shared environmental variation 
(C) 

-0.073 -0.076, -0696 -0.039 -0.042, -0.035 

Non-shared environmental 
variation (E) 

-0.583 -0.584, -0.5805 -0.657 -0.659, -0.655 

2.2: Associations between probe reliability and mQTL probes. In our manuscript, we report 
that methylation Quantitative Trait Loci (mQTLs)--DNA sequence variants that are associated with 
differential DNA methylation--are more likely to be associated with reliable probes than unreliable probes. 

When restricting our analysis to just those probes that are variable, we find little change in the 
extent to which the list of mQTL-associated probes is enriched for reliable probes (Table S2, below). It is 
not purely variability driving the ability to detect associations between sequence variants and differential 
DNA methylation. 

 Table S2. GSEA (enrichment) analysis of mQTL- and non mQTL indexing probes 

 All probes (N = 438,593) Variant probes only (N = 334,449) 

 

Normalized 
Enrichment Score 

p value 
Normalized 

Enrichment Score 
p value 

mQTL probes 1.477 0.002 1.525 0.0002 

non-mQTL 
probes 

0.867 1.00 0.850 1.00 

2.3: Associations of probe reliability with the extent of concordance in DNA methylation 
levels between blood and brain tissue. In our manuscript, we report that probes that show similar 
levels of DNA methylation in blood and any of four different brain regions (‘blood-brain’ concordance) are 
more likely to be reliably measured. 

When restricting our analysis to just those probes that are variable, we find little attenuation of the 
association between reliability and blood-brain concordance (Table S3, below).  It is not purely variability 
driving the ability to detect blood-brain concordance.   

Table S3. correlations of reliability and concordance of methylation values between blood 
and each of four brain regions 

 All probes (N = 438,593) 
Variant probes only (N = 

334,449) 

Blood-brain region 
concordance 

rho 95% CI rho 95% CI 

Prefrontal Cortex 0.348 0.345, 0.351 0.362 0.359, 0.365 

Entorhinal Cortex 0.315 0.312, 0.317 0.360 0.357, 0.363 

Superior Temporal Gyrus 0.376 0.373, 0.379 0.390 0.387, 0.393 

Cerebellum 0.218 0.215, 0.222 0.218 0.215, 0.221 

In summary,  variability, though highly related to reliability, is not sufficient to account for the 
challenges posed by unreliable DNA methylation measurement.  



 

 
 

 

S3.1: Sample description and data production 
 

Environmental Risk (E-Risk) Longitudinal Twin Study  
 

 Sample Description. Participants were members of E-Risk, which tracks the development of a 
1994-95 birth cohort of 2,232 British children13. Briefly, the E-Risk sample was constructed in 1999-2000, 
when 1,116 families (93% of those eligible) with same-sex 5-year-old twins participated in home-visit 
assessments. This sample comprised 56% monozygotic (MZ) and 44% dizygotic (DZ) twin pairs; sex was 
evenly distributed within zygosity (49% male). The study sample represents the full range of 
socioeconomic conditions in Great Britain, as reflected in the families’ distribution on a neighborhood-
level socioeconomic index (ACORN [A Classification of Residential Neighbourhoods], developed by CACI 
Inc. for commercial use): 25.6% of E-Risk families live in “wealthy achiever” neighborhoods compared to 
25.3% nationwide; 5.3% vs. 11.6% live in “urban prosperity” neighborhoods; 29.6% vs. 26.9% in 
“comfortably off” neighborhoods; 13.4% vs. 13.9% in “moderate means” neighborhoods; and 26.1% vs. 
20.7% in “hard-pressed” neighborhoods. E-Risk underrepresents “urban prosperity” neighborhoods 
because such households are often childless.  

Home visits were conducted when participants were aged 5, 7, 10, 12 and most recently, 18 
years (93% participation).  The Joint South London and Maudsley and the Institute of Psychiatry 
Research Ethics Committee approved each phase of the study. Parents gave informed written consent 
and twins gave written assent between 5-12 years and then informed written consent at age 18.  

 At age 18, 2,066 participants were assessed, each twin by a different interviewer. The average 
age at the time of assessment was 18.4 years (SD = 0.36); all interviews were conducted after the 18th 
birthday.  

Genome-wide quantification of DNA methylation. Our epigenetic study used DNA from a 
single tissue: blood. At age 18, whole blood was collected from 82% (N=1700) of the participants in 10mL 
K2EDTA tubes. DNA was extracted from the buffy coat using a Flexigene DNA extraction kit (Qiagen, 
Hilden, Germany) following manufacturer’s instructions. Study members who did not provide blood 
provided buccal swabs, but these were not included in our methylation analysis to avoid tissue-source 
confounds. Assays were run by the Complex Disease Epigenetics Group at the University of Exeter 
Medical School, and as described in full in previous publications9,14. 450K BeadChip data were available 
for 1658 study members. 

Reliability dataset. For our reliability analysis we selected 350 individuals to assay with the EPIC 
BeadChip. ~500ng of DNA from each sample was treated with sodium bisulfite using the EZ-96 DNA 
Methylation kit (Zymo Research, CA, USA). DNA methylation was quantified using the Infinium 
MethylationEPIC (‘EPIC’) BeadChip run on an Illumina iScan System (Illumina, CA, USA) by the Complex 
Disease Epigenetics Group at the University of Exeter Medical School.  

Reliability Dataset Processing and Normalization. The EPIC and 450K BeadChip data that 
comprise the reliability dataset were imported into the minfi Bioconductor package15,16.  Probes were 
excluded if they had a detection p-value > 0.05 in at least 10% of the samples in either the EPIC or the 
450K BeadChip datasets. Data were processed using the subset-quantile within array normalization 

Section S3: Additional Experimental Procedures 



 

 
 

(SWAN) approach to eliminate systematic differences across the arrays.  This method was chosen 
because it is currently one of the very few methods that allows normalization of 450K and EPIC BeadChip 
data together. Probes were kept for subsequent analysis if they passed the detection p-value threshold in 
both technologies, were shared between the two array platforms, and did not map to a sex chromosome.   
  Low reliability might arise through experimental factors not related solely to poor probe 
performance. We therefore tested two ways in which normalization might affect reliability estimates. First, 
low reliability could be due to data handling differences between datasets. To test this, we compared 
reliability coefficients after normalizing the datasets in two ways: (a) where data from 450K and EPIC 
BeadChips were normalized as separate datasets and (b) where they were normalized together as one 
dataset. The different normalization strategies had little effect on reliability estimates (Figure S8A, r = 
1.00, p < 0.01), suggesting differential probe reliability was not a product of data-handling practices. The 
‘normalized separately’ set is used for all analyses unless otherwise noted.   

Second, low reliability could be due to differences in relative ranks of probes induced through use 
of specific normalization methods. To test this, we re-normalized our data using an alternative method 
(‘’Quantile”) to that we have employed (“SWAN”), and compared the reliabilities generated using each. 
Normalization method had little effect on reliability measures (Figure S8B, r = 0.98, p < 0.01), suggesting 
our results are not affected by normalization strategy. 
  



 

 
 

 

 

Figure S8: Reliability correlations for probes common to the 450K and EPIC 
BeadChips.  (A) compares the reliability correlations generated when data for each 
BeadChip type were normalized together (x-axis) or normalized separately (y-axis). (B) 
compares the reliability correlations generated using ‘SWAN’, as reported in the main text 
of the manuscript (x-axis), and those generated using data normalized with ‘Quantile’ (y-
axis). In either case, normalization strategy seems to have little effect on the distribution 
of probe-probe reliability correlations.  



 

 
 

Dunedin Longitudinal Study  

Sample description. Participants were members of the Dunedin Multidisciplinary Health and 
Development Study, a longitudinal investigation of health and behavior in a representative birth cohort17. 
Study members (n = 1,037; 91% of eligible births; 52% male) were all individuals born between April 1972 
and March 1973 in Dunedin, New Zealand, who were eligible for the longitudinal study based on 
residence in the province at 3 years of age and who participated in the first follow-up assessment at 3 
years of age. The cohort represented the full range of socioeconomic status on NZ’s South Island. On 
adult health, the cohort matches the NZ National Health and Nutrition Survey (e.g., BMI, smoking, GP 
visits)17. The cohort is primarily white (93%); genetic analyses were restricted to non-Maori participants. 
Assessments were carried out at birth and at ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, 38 and 45 years, 
when 94% of the 997 study members still alive took part. The Otago Ethics Committee approved each 
phase of the study and informed consent was obtained from all study members. 

Genome-wide quantification of DNA methylation using 450K BeadChips. Our epigenetic 
study used DNA from a single tissue: blood. Whole blood was collected in 10mL K2EDTA tubes from N = 
857 participants at age 38. DNA was extracted from the buffy coat using standard procedures18,19. Study 
members who did not provide blood provided buccal swabs, but these were not included in our 
methylation analysis to avoid tissue-source confounds. 

We assayed 835 blood samples (out of 857); 22 samples were not useable. ~500ng of DNA from 
each sample was treated with sodium bisulfite using the EZ-96 DNA Methylation kit (Zymo Research, CA, 
USA). DNA methylation was quantified using the Illumina Infinium HumanMethylation450 BeadChip 
(“Illumina 450K BeadChip”) run on an Illumina iScan System (Illumina, CA, USA) at the Molecular 
Genomics Core at the Duke Molecular Physiology Institute and are described in full in previous 
publications14.  

Genome-wide quantification of DNA methylation using EPIC BeadChips. To assay within-
array reliability of the EPIC BeadChip, we selected 28 individuals from the Age 45 data collection phase 
of the Dunedin Study and assayed their DNA twice. DNA was collected from blood and extracted as 
above.  ~500ng of DNA from each sample was treated with sodium bisulfite using the EZ-96 DNA 
Methylation kit (Zymo Research, CA, USA). DNA methylation was quantified using the Infinium 
MethylationEPIC (‘EPIC’) BeadChip run on an Illumina iScan System (Illumina, CA, USA) at the Molecular 
Genomics Core at the Duke Molecular Physiology Institute.  Data were processed, underwent quality 
control filtering, and normalized as described above for the 350-sample reliability dataset.   

Gene Expression. Expression data were generated from whole-blood RNA using the Affymetrix 
PrimeView Human Gene Chip (Affymetrix, CA, USA). Briefly, these arrays simultaneously interrogate 
more than 38,000 gene transcripts across the entire genome. Whole-blood RNA samples collected via 
PaxGene Blood RNA tubes (Qiagen, CA, USA) at age 38 were assayed. Samples were arranged into 
batches of 60. Array processing was performed by the Duke University Microarray Core Facility using the 
Affymetrix GeneChip system (Affymetrix). Prior to hybridization, total RNA was assessed for quality with 
Agilent 2100 Bioanalyzer G2939A (Agilent Technologies, Santa Clara, CA)) and Nanodrop 8000 
spectrophotometer (Thermo Scientific/Nanodrop, Wilmington, DE). Samples with RIN ≥ 6 were then 
subject to globin mRNA depletion using the GLOBINClear –human kit (Ambion, Thermo Fisher Scientific, 
MA, USA). RNA samples from 843 individuals were assayed. Data quality control and RMA normalization 
were carried out using the affy Bioconductor package20 in the R statistical programming environment. 
After QC, expression data were available for 836 individuals.  

  



 

 
 

S3.2: Data analysis 

Data analysis was performed in the R statistical programming environment, often using 
Bioconductor packages. Data handling was performed using the package dplyr 21 and descriptives were 
generated using the package psych22. Plots were produced in R using the packages ggplot223 and 
ggpubr24 where appropriate.  Density heatmaps were generated using the KernSmooth package25.  
Unless otherwise noted, correlations are reported as two-tailed Pearson product-moment correlation 
coefficients.  Intraclass correlation was calculated using the irr package26. 

Probe reliabilities. Probe reliabilities are computed using Intraclass Correlations (ICC), 
calculated for each autosomal probe present on both the EPIC and 450K BeadChip (N=438,593). ICCs 
are an oft-used metric to assess reliability in test-retest situations27, and many different models exist 
depending on the way in which the test-retest data are generated. Here, we calculated ICCs based on a 
mean-rating (k=2), absolute-agreement, 2-way random-effects model. We chose this model using the 
guidelines outlined in Koo and Li27, where mean-rating (k=2) relates to the number of repeated measures 
(i.e., BeadChips per sample); absolute agreement requires that not only do the values across BeadChips 
correlate, but that values are in agreement; and 2-way random effects relates to the generalizability of the 
ICCs to any subsequent similarly characterized rater (where rater = BeadChip probe). To compare 
whether test-retest model choice had an effect on reliability estimates, we also computed Pearson 
product-moment correlation coefficients. Pearson correlation coefficients and ICC estimates of reliability 
were highly similar (r=1.00, P=<1x10-4;  Figure S9).  

 

 

Figure S9: Reliabilities expressed as Pearson correlation coefficients and Intra-Class 
Coefficients are similar (Refers to Main Text Experimental Procedures section “Probe 
Reliabilities”). The y-axis plots probe reliabilities as Pearson correlation coefficients and the x-axis 
plots the Intra-Class Coefficients (ICC. Reliabilities were highly correlated (r = 1.00).  



 

 
 

Gene Set Enrichment Analysis.   Gene Set Enrichment Analysis (GSEA) was performed using 
the fgsea Bioconductor package28 with 10,000 permutations. We tested if each probe list was significantly 
enriched for more highly reliable probes. Due to computing constraints, if a list had more than 35000 
probes, it was truncated down to a random sampling of 35000 probes for the analysis. 

Structural equation modelling. Biometrical modelling was applied to every probe passing QC 
on the Illumina 450K array. Specifically, an ACE model was fitted to calculate the proportion of variance in 
DNA methylation explained by additive genetic (A), shared environmental (C) and unshared or unique 
environmental (E) factors, the latter which also includes measurement error. The assumptions behind this 
model are that additive genetic factors are perfectly correlated between MZ twins (i.e. genetic correlation 
= 1) but are only 50% correlated between DZ twins (i.e. genetic correlation = 0.5) and that shared non-
heritable influences are equally similar between MZ and DZ twin pairs. The model was fitted using 
structural equation modelling implemented with functions from the OpenMx R package29,30.  

Identification of Smoking-related DNA methylation probes. We identified 22 studies that 
reported an epigenome-wide analysis of current vs never smoking using the 450K BeadChip platform31-37. 
For each study, we obtained lists of probe IDs and direction-of-effect for probes that were significantly 
associated with current smoking (as determined by the study authors; total number of probes=3,724; N 
probes per study=84-2,441). We then determined the extent to which individual probes replicated across 
the 22 studies by summing the number of times each probe was listed with consistent direction-of-effect 
(i.e., consistent cross-study increases or decreases in methylation in response to smoking). Descriptions 
of the studies included are found in  Table S4. 

 



 

 

 Table S4. Descriptions of the studies included in analysis of consistency of replication for DNA methylation-smoking associations 

(Refers to Main text Result item “Probe reliability impacts association testing”). Descriptives are derived from the original publications. 
Information on the 16 studies included in the meta-analysis by Joehanes et al., (2016) is individually listed. 

Publication Cohort 
Sample 
Origin 

N (% 
smokers) 

% male 
Age; mean 
(SD), where 

available 

N probes 
significant* 

N probes with 
available 

reliability data 
Additional Notes 

Zellinger et al., 
(2013) 

KORA F3 
and F4 

Whole Blood 
1011 (26.0) 

and 468 (50.4) 
60.3 and 

49.4 
56.96 (46-76) 187 174 

sites replicated 
across F3 and F4 

Besingi et al., 
(2014) 

NSPHS Whole Blood 421 (10.2) 53.0 14 - 94 95 84  

Dogan et al., (2014) FACHS PBMCs 111 (45.0) 0.0 48.1 +/- 7 910 840 
African American 

participants 

Guida et al., (2015) 
EPIC and 
NOWAC 

Buffy coat 745 (23.8) 0.0 
53.1 (7.4); 
55.4 (4.3) 

461 431  

Dogan et al., (2017) FHS Buffy coat 1597 (7.6) 54.9 
62.0 - 67.7 
(6.5- 8.6) 

525 482 
current vs non-

smoker 

Wilson et al., 
(2017) 

KORA S4/F4 whole blood 1344 (20.38) 58.1 
50.8 (7.8) - 
55.1 (9.0) 

590 557  

Joehanes et al., 
(2016); meta-
analysis 
comprising 16 
cohorts (listed 
individually); each 
cohort treated as 
an individual study 
for current 
analysis 
 
 
 
 
 
 
 
 

     2,623** 2,441  

ARIC Buffy coat 2848 (25.3) 36.4 56.2 (5.8)   African American 
participants 

GTP Whole Blood 286 (32.9) 29.0 43.4 (11.7)   African American 
participants 

CHS AA Whole Blood 192 (15.6) 34.9 70.4 (4.9)   African American 
participants 

GENOA Buffy coat 420 (18.3) 28.8 58.7 (7.9)   African American 
participants 

FHS Whole Blood 2648 (10.3) 45.7 62.5 (7.8)   European American 
participants 

KORA F4 Whole Blood 1797 (14.6) 48.7 57.0 (7.0)   European American 
participants 

GOLDN CD4+ 992 (7.4) 47.8 44 (13)   European American 
participants 

LBC 1921 Whole Blood 445 (7.0) 39.6 79.2 (0.5)   European American 
participants 



 

 

Publication Cohort 
Sample 
Origin 

N (% 
smokers) 

% male 
Age; mean 
(SD), where 

available 

N probes 
significant* 

N probes with 
available 

reliability data 
Additional Notes 

 
 
  

LBC 1936 Whole Blood 920 (11.2) 50.5 69.5 (0.7)   European American 
participants 

NAS Whole Blood 644 (4.0) 100.0 68.2 (6.1)   European American 
participants 

Rotterdam Whole Blood 686 (24.6) 43.6 58.0 (6.8)   European American 
participants 

Inchianti Whole Blood 508 (9.8) 45.1 58.9 / 16.8   European American 
participants 

CHS EA Whole Blood 184 (12.5) 44.0 74.1 (4.2)   European American 
participants 

EPIC-Norfolk Buffy coat 1183 (16.1) 49.6 58.3 (8.4)   European American 
participants 

MESA CD14+ 1256 (9.1) 48.6 65 (8)   
European American, 
African American and 
Hispanic participants 

EPIC Buffy coat 898 (21.8) 0.0 48.9 (8.8)   European American 
participants 

 
* as identified by Study Authors 
**significant at α = 1x10-7 level 
 

 



 

 

Correlation of methylation with gene expression.  Each probe in the Dunedin 450K 
methylation dataset was correlated with each probeset from the Dunedin PrimeView gene expression 
dataset using Spearman’s rank correlation approach.  To control for technical variation in the gene 
expression data, we regressed out the following microarray-based quality metrics described by Peters et 
al.38: mean of positive match probesets, mean of positive control probesets, standard deviation of positive 
control probesets, mean of negative control probesets, standard deviation of negative control probesets, 
mean of all probesets, standard deviation of all probesets, and relative log expression mean of all 
probesets, along with sex, array batch and RIN.  To control for technical variation in the methylation data, 
we regressed out the first 32 principal components calculated from the control probes on the arrays.  For 
both datasets, we controlled for cell type composition by regressing out white cell-type counts measured 
using flow cytometry (Sysmex Corporation, Japan) in whole blood samples taken concurrently with the 
DNA and RNA samples.  Methylation probes that overlapped the transcription start site of at least one 
isoform of each gene represented by a gene expression probeset were kept for subsequent analysis. For 
each methylation probe, the gene expression probeset with the highest Spearman correlation coefficient 
was retained as the representative probeset for the expression level of that gene.  Thus, each methylation 
probe is reported as correlated with a single gene expression probeset.  A methylation-expression 
correlation coefficient was considered significant if it had a p-value <= 1x10-7. 

Determination of the number of replicates needed to identify reliable probes.  The 350 
samples used for the reliability analysis were randomly ordered.  Reliability was calculated on growing 
subsets of the data that were needed to consistently identify probes that had a reliability >= 0.75 in the full 
set of 350 samples (Figure S10).   

 

Figure S10: Simulation of the number of replicate BeadChips needed to identify 
reliable probes. Simulations suggests that 25 replicates would be sufficient to capture 
80% of the probes with reliability > 0.75 observed in the dataset of 350.   



 

 

 

References 
 

 

1. Cicchetti, D.V., and Sparrow, S.A. (1981). Developing criteria for establishing interrater reliability 
of specific items: applications to assessment of adaptive behavior. Am J Ment Defic 86, 127-137. 

2. Logue, M.W., Smith, A.K., Wolf, E.J., Maniates, H., Stone, A., Schichman, S.A., McGlinchey, 
R.E., Milberg, W., and Miller, M.W. (2017). The correlation of methylation levels measured using Illumina 
450K and EPIC BeadChips in blood samples. Epigenomics 9, 1363-1371. 

3. Dugue, P.A., English, D.R., MacInnis, R.J., Jung, C.H., Bassett, J.K., FitzGerald, L.M., Wong, 
E.M., Joo, J.E., Hopper, J.L., Southey, M.C., et al. (2016). Reliability of DNA methylation measures from 
dried blood spots and mononuclear cells using the HumanMethylation450k BeadArray. Sci Rep 6, 30317. 

4. Bose, M., Wu, C., Pankow, J.S., Demerath, E.W., Bressler, J., Fornage, M., Grove, M.L., Mosley, 
T.H., Hicks, C., North, K., et al. (2014). Evaluation of microarray-based DNA methylation measurement 
using technical replicates: the Atherosclerosis Risk In Communities (ARIC) Study. BMC Bioinformatics 
15, 312. 

5. Solomon, O., MacIsaac, J., Quach, H., Tindula, G., Kobor, M.S., Huen, K., Meaney, M.J., 
Eskenazi, B., Barcellos, L.F., and Holland, N. (2018). Comparison of DNA methylation measured by 
Illumina 450K and EPIC BeadChips in blood of newborns and 14-year-old children. Epigenetics 13, 655-
664. 

6. Bibikova, M., Le, J., Barnes, B., Saedinia-Melnyk, S., Zhou, L., Shen, R., and Gunderson, K.L. 
(2009). Genome-wide DNA methylation profiling using Infinium(R) assay. Epigenomics 1, 177-200. 

7. Dedeurwaerder, S., Defrance, M., Calonne, E., Denis, H., Sotiriou, C., and Fuks, F. (2011). 
Evaluation of the Infinium Methylation 450K technology. Epigenomics 3, 771-784. 

8. Edgar, R.D., Jones, M.J., Robinson, W.P., and Kobor, M.S. (2017). An empirically driven data 
reduction method on the human 450K methylation array to remove tissue specific non-variable CpGs. 
Clin Epigenetics 9, 11. 

9. Hannon, E., Knox, O., Sugden, K., Burrage, J., Wong, C.C.Y., Belsky, D.W., Corcoran, D.L., 
Arseneault, L., Moffitt, T.E., Caspi, A., et al. (2018). Characterizing genetic and environmental influences 
on variable DNA methylation using monozygotic and dizygotic twins. PLoS Genet 14, e1007544. 

10. van Dongen, J., Ehli, E.A., Slieker, R.C., Bartels, M., Weber, Z.M., Davies, G.E., Slagboom, P.E., 
Heijmans, B.T., and Boomsma, D.I. (2014). Epigenetic variation in monozygotic twins: a genome-wide 
analysis of DNA methylation in buccal cells. Genes (Basel) 5, 347-365. 

11. Naeem, H., Wong, N.C., Chatterton, Z., Hong, M.K., Pedersen, J.S., Corcoran, N.M., Hovens, 
C.M., and Macintyre, G. (2014). Reducing the risk of false discovery enabling identification of biologically 
significant genome-wide methylation status using the HumanMethylation450 array. BMC Genomics 15, 
51. 

12. Du, P., Zhang, X., Huang, C.C., Jafari, N., Kibbe, W.A., Hou, L., and Lin, S.M. (2010). 
Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. 
BMC Bioinformatics 11, 587. 



 

 

13. Moffitt, T.E., and E-Risk Study Team (2002). Teen-aged mothers in contemporary Britain. J Child 
Psychol Psychiatry 43, 727-742. 

14. Marzi, S.J., Sugden, K., Arseneault, L., Belsky, D.W., Burrage, J., Corcoran, D.L., Danese, A., 
Fisher, H.L., Hannon, E., Moffitt, T.E., et al. (2018). Analysis of DNA Methylation in Young People: 
Limited Evidence for an Association Between Victimization Stress and Epigenetic Variation in Blood. Am 
J Psychiatry 175, 517-529. 

15. Aryee, M.J., Jaffe, A.E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A.P., Hansen, K.D., and 
Irizarry, R.A. (2014). Minfi: a flexible and comprehensive Bioconductor package for the analysis of 
Infinium DNA methylation microarrays. Bioinformatics 30, 1363-1369. 

16. Huber, W., Carey, V.J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B.S., Bravo, H.C., 
Davis, S., Gatto, L., Girke, T., et al. (2015). Orchestrating high-throughput genomic analysis with 
Bioconductor. Nat Methods 12, 115-121. 

17. Poulton, R., Moffitt, T.E., and Silva, P.A. (2015). The Dunedin Multidisciplinary Health and 
Development Study: overview of the first 40 years, with an eye to the future. Soc Psychiatry Psychiatr 
Epidemiol 50, 679-693. 

18. Bowtell, D.D. (1987). Rapid isolation of eukaryotic DNA. Anal Biochem 162, 463-465. 

19. Jeanpierre, M. (1987). A rapid method for the purification of DNA from blood. Nucleic Acids Res 
15, 9611. 

20. Gautier, L., Cope, L., Bolstad, B.M., and Irizarry, R.A. (2004). affy--analysis of Affymetrix 
GeneChip data at the probe level. Bioinformatics 20, 307-315. 

21. Wickham, H., François, R., Henry, L., and Müller, K. (2018). dplyr: A Grammar of Data 
Manipulation. R package version 0.7.4. . 

22. Revelle, W. (2018). psych: Procedures for Personality and Psychological Research. R package 
version 1.7.8. 

23. Wickham, H. (2009). ggplot2 (New York, New York, USA: Springer-Verlag New York). 

24. Kassambara, A. (2018). ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 
0.1.6.9999  

25. Wand, M. (2015). KernSmooth: Functions for Kernel Smoothing Supporting Wand & Jones 
(1995). R package version 2.23-15. 

26. Gamer, M., Lemon, J., Fellows, I., and Singh, P. (2019). irr: Various Coefficients of Interrater 
Reliability and Agreement. R package version 0.84.1. 

27. Koo, T.K., and Li, M.Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation 
Coefficients for Reliability Research. J Chiropr Med 15, 155-163. 

28. Sergushichev, A.A. (2016). An algorithm for fast preranked gene set enrichment analysis using 
cumulative statistic calculation (bioRxiv). 

29. Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., Spies, J., Estabrook, R., Kenny, 
S., Bates, T., et al. (2011). OpenMx: An Open Source Extended Structural Equation Modeling 
Framework. Psychometrika 76, 306-317. 



 

 

30. Neale, M.C., Hunter, M.D., Pritikin, J.N., Zahery, M., Brick, T.R., Kirkpatrick, R.M., Estabrook, R., 
Bates, T.C., Maes, H.H., and Boker, S.M. (2016). OpenMx 2.0: Extended Structural Equation and 
Statistical Modeling. Psychometrika 81, 535-549. 

31. Dogan, M.V., Beach, S.R.H., and Philibert, R.A. (2017). Genetically contextual effects of smoking 
on genome wide DNA methylation. Am J Med Genet B Neuropsychiatr Genet 174, 595-607. 

32. Besingi, W., and Johansson, A. (2014). Smoke-related DNA methylation changes in the etiology 
of human disease. Hum Mol Genet 23, 2290-2297. 

33. Guida, F., Sandanger, T.M., Castagne, R., Campanella, G., Polidoro, S., Palli, D., Krogh, V., 
Tumino, R., Sacerdote, C., Panico, S., et al. (2015). Dynamics of smoking-induced genome-wide 
methylation changes with time since smoking cessation. Hum Mol Genet 24, 2349-2359. 

34. Joehanes, R., Just, A.C., Marioni, R.E., Pilling, L.C., Reynolds, L.M., Mandaviya, P.R., Guan, W., 
Xu, T., Elks, C.E., Aslibekyan, S., et al. (2016). Epigenetic Signatures of Cigarette Smoking. Circ 
Cardiovasc Genet 9, 436-447. 

35. Wilson, R., Wahl, S., Pfeiffer, L., Ward-Caviness, C.K., Kunze, S., Kretschmer, A., Reischl, E., 
Peters, A., Gieger, C., and Waldenberger, M. (2017). The dynamics of smoking-related disturbed 
methylation: a two time-point study of methylation change in smokers, non-smokers and former smokers. 
BMC Genomics 18, 805. 

36. Dogan, M.V., Shields, B., Cutrona, C., Gao, L., Gibbons, F.X., Simons, R., Monick, M., Brody, 
G.H., Tan, K., Beach, S.R., et al. (2014). The effect of smoking on DNA methylation of peripheral blood 
mononuclear cells from African American women. BMC Genomics 15, 151. 

37. Zeilinger, S., Kuhnel, B., Klopp, N., Baurecht, H., Kleinschmidt, A., Gieger, C., Weidinger, S., 
Lattka, E., Adamski, J., Peters, A., et al. (2013). Tobacco smoking leads to extensive genome-wide 
changes in DNA methylation. PLoS One 8, e63812. 

38. Peters, M.J., Joehanes, R., Pilling, L.C., Schurmann, C., Conneely, K.N., Powell, J., Reinmaa, E., 
Sutphin, G.L., Zhernakova, A., Schramm, K., et al. (2015). The transcriptional landscape of age in human 
peripheral blood. Nat Commun 6, 8570. 

 


	ELS_PATTER100014_annotate.pdf
	Patterns of Reliability: Assessing the Reproducibility and Integrity of DNA Methylation Measurement
	Introduction
	Results
	Reliability of CpG Probes Is Low and Highly Variable
	Evaluating the Consequences of Unreliable Probe Measurements
	Estimates of Genetic and Environmental Effects on DNA Methylation Are Affected by Unreliable Measurement
	Probe Reliability Affects Association Testing
	Publicly Available DNA Methylation Aging Algorithms Contain Unreliable Measurements
	Reliability Influences the Association between DNA Methylation and Gene Expression
	Reliability Influences the Concordance of Blood and Brain Methylation Levels


	Discussion
	Experimental Procedures
	Samples
	DNA Methylation
	Gene Expression
	Probe Reliabilities
	Statistical Analysis

	Data and Code Availability
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References



