Investigating the genetic architecture of noncognitive skills using GWAS-by-subtraction

Perline A. Demange1,2,3,20, Margherita Malanchini4,5,6,20, Travis T. Mallard6,7, Simon R. Cox8, Andrew D. Grotzinger6, Elliot M. Tucker-Drob6,9, Abdel Abdellaoui1,10, Louise Arseneault5, Elsje van Bergen1,3, Dorret I. Boomsma1, Avshalom Caspi15,11,12,13, David L. Corcoran12, Benjamin W. Domingue14, Kathleen Mullan Harris15, Hill F. Ip1, Colter Mitchell16, Terrie E. Moffitt5,11,12,13, Richie Poulton17, Joseph A. Prinz12, Karen Sugden11, Jasmin Wertz11, Benjamin S. Williams11, Eveline L. de Zeeuw1,3, Daniel W. Belsky18,19,21✉, K. Paige Harden6,21✉ and Michel G. Nivard1,21✉

Little is known about the genetic architecture of traits affecting educational attainment other than cognitive ability. We used genomic structural equation modeling and prior genome-wide association studies (GWASs) of educational attainment (n = 1,131,881) and cognitive test performance (n = 257,841) to estimate SNP associations with educational attainment variation that is independent of cognitive ability. We identified 157 genome-wide-significant loci and a polygenic architecture accounting for 57% of genetic variance in educational attainment. Noncognitive genetics were enriched in the same brain tissues and cell types as cognitive performance, but showed different associations with gray-matter brain volumes. Noncognitive genetics were further distinguished by associations with personality traits, less risky behavior and increased risk for certain psychiatric disorders. For socioeconomic success and longevity, noncognitive and cognitive-performance genetics demonstrated associations of similar magnitude. By conducting a GWAS of a phenotype that was not directly measured, we offer a view of genetic architecture of noncognitive skills influencing educational success.

It takes something more than intelligence to act intelligently. Fyodor Dostoyevsky, *Crime and Punishment*

Success in school—and life—depends on skills beyond cognitive ability1–4. Randomized trials of early life educational interventions find substantial benefits to educational outcomes, employment and adult health, even though the interventions have no lasting effects on children’s cognitive functions5,6. These results have captured the attention of educators and policy-makers, motivating interest in so-called ‘noncognitive skills’7–9. Noncognitive skills suspected to be important for educational success include motivation, curiosity, persistence and self-control10–11. However, questions have been raised about the substance of these skills and the magnitudes of their impacts on life outcomes12.

Twin studies find evidence that noncognitive skills are heritable13–18. Genetic analysis could help clarify the contribution of these skills to educational attainment and elucidate their connections with other traits. However, lack of consistent and reliable measurements of noncognitive skills in existing genetic datasets poses challenges19.

To overcome these challenges, we designed a GWAS of a latent trait, that is, a trait not measured in any of the genotyped subjects20. We borrowed the strategy used in the original analysis of noncognitive skills within the discipline of economics21,22: we defined genetic influences on noncognitive skills as the genetic variation in educational attainment that was not explained by cognitive skills. We then performed GWASs on this residual ‘noncognitive’ genetic variation in educational attainment. This approach is a necessarily imperfect representation of the true relationship between cognitive and noncognitive skills; in human development, cognitive abilities and other skills relevant for educational attainment probably interact dynamically, each influencing the other23. Our analysis excludes genetic...
ARTICLES

influences on education-relevant skills that also influence measured cognitive abilities. The value of this imperfect approach is to make a quantity otherwise difficult to study tractable for analysis.

We conducted analysis using genomic structural equation modeling (Genomic-SEM)\(^\text{23}\) applied to published GWAS summary statistics for educational attainment and cognitive performance\(^\text{25}\). Our analysis used these summary statistics to 'subtract' genetic influence on cognitive performance from the association of each SNP with educational attainment. The remaining associations of each SNP with educational attainment formed a new GWAS of a noncognitive phenotype that was never directly measured. We call this new statistical approach GWAS-by-subtraction.

We used results from the GWAS-by-subtraction of noncognitive skills to conduct two sets of analyses. First, we conducted hypothesis-driven analysis using the phenotypic annotation approach\(^\text{26}\). We used genetic correlation and polygenic score analysis to test the hypothesis that noncognitive skills influence educational and economic attainments and longevity and to investigate traits and behaviors that constitute noncognitive skills. Second, we conducted hypothesis-free bioinformatic annotation analysis to explore the tissues, cell types and brain structures that might distinguish the biology of noncognitive skills from the biology mediating cognitive influences on educational attainment.

Results

GWAS-by-subtraction identifies genetic associations with noncognitive variance in educational attainment. The term 'noncognitive skills' was originally coined by economists studying individuals who were equivalent in cognitive ability but differed in educational attainment\(^\text{27}\). Our analysis of noncognitive skills was designed to mirror this original approach: we focused on genetic variation in educational outcomes not explained by genetic variation in cognitive ability. Specifically, we applied Genomic-SEM\(^\text{23}\) to summary statistics from GWASs of educational attainment\(^\text{25}\) and cognitive performance\(^\text{25}\). Both phenotypes were regressed on a latent factor representing genetic variance in cognitive performance (hereafter 'Cog'). Educational attainment was further regressed on a second latent factor representing the residual genetic variance in educational attainment left over after regressing out variance related to cognitive performance (hereafter 'NonCog'). By construction, NonCog genetic variance was independent of Cog genetic variance (\(r = 0\)). In other words, the NonCog factor represents genetic variation in educational attainment that is not accounted for by the Cog factor. These two latent factors were then regressed on individual SNPs, yielding a GWAS of the latent constructs NonCog and Cog. A graphic representation of the model is presented in Fig. 1. Parameters are derived in terms of the observed moments of the joint distribution of educational attainment, cognitive performance and an SNP (Supplementary Note).

The NonCog latent factor accounted for 57% of total genetic variance in educational attainment. Using linkage disequilibrium (LD) score regression\(^\text{28}\), we estimated the SNP heritability for NonCog to be \(h^2_{\text{NonCog}} = 0.0637\) (s.e. = 0.0021). After conventional GWAS significance threshold correction, GWAS of NonCog identified 157 independent genome-wide-significant lead SNPs (independent SNPs defined as outside a 250-kb window, or within a 250-kb window and LD \(r^2 < 0.1\)). The results from the NonCog GWAS are shown as a Manhattan plot in Fig. 2. NonCog and Cog GWAS details are reported in Supplementary Tables 1–4, Supplementary Fig. 1 and the Supplementary Note. In addition, we report a series of sensitivity analyses as follows: analysis of potential biases due to cohort differences (Supplementary Table 5 and Supplementary Figs. 2–4); analysis of impact of allowing for positive genetic correlations between NonCog and Cog (Supplementary Tables 6 and 7, and Supplementary Figs. 5 and 6); and analysis of impact of allowing for a moderate causal effect of educational attainment on cognitive performance\(^\text{28}\) (Supplementary Table 8 and Supplementary Figs. 7–9).

Phenotypic annotation analysis elucidates correlates of noncognitive skills genetics. Our phenotypic annotation analyses proceeded in two steps. First, we conducted polygenic score (PGS) and genetic correlation (rG) analysis to test whether our GWAS-by-subtraction succeeded in identifying genetic influences that were important to educational attainment and also distinct from genetic influences on cognitive ability. Second, we conducted PGS and rG analyses to explore how NonCog related to a network of phenotypes that psychology and economics research suggests might form the basis of noncognitive influences on educational attainment.

NonCog genetics are associated with education, socioeconomic attainment and longevity. To establish whether the Genomic-SEM GWAS-by-subtraction succeeded in isolating genetic variance in education that was independent of cognitive function, we compared genetic associations of NonCog and Cog with educational attainment and cognitive test performance. Results for analysis of education and cognitive test phenotypes are shown in Fig. 3.
We conducted PGS analysis of educational attainment in the Netherlands Twin Register29 (NTR), National Longitudinal Study of Adolescent to Adult Health30 (AddHealth), Dunedin Longitudinal Study31, E-Risk32 and Wisconsin Longitudinal Study33 (WLS) cohorts (meta-analysis \(n = 24,056 \); cohort descriptions in Supplementary Tables 9 and 10 and Supplementary Note). PGS effect sizes were the same for \textit{NonCog} and \textit{Cog} (\begin{math} \text{NonCog} \beta = 0.24 \text{ (s.e.} = 0.03), \text{Cog} \beta = 0.24 \text{ (s.e.} = 0.02), P_{\text{diff}} = 0.702; \end{math} all PGS results are reported in Supplementary Tables 11 and 12). We conducted complementary genetic correlation analysis using Genomic-SEM and GWAS summary statistics from a hold-out sample GWAS of educational attainment (Supplementary Note). This analysis allowed us to compute an out-of-sample genetic correlation of \textit{NonCog} with educational attainment. \textit{NonCog} showed a stronger genetic correlation with educational attainment compared with \textit{Cog} (\begin{math} \text{NonCog} r_g = 0.71 \text{ (s.e.} = 0.02), \text{Cog} r_g = 0.57 \text{ (s.e.} = 0.02), P_{\text{diff}} < 0.0001; \end{math} all genetic correlation results are reported in Supplementary Tables 13 and 14).

We conducted PGS analysis of cognitive test performance in the NTR, Texas Twin Project34, Dunedin, E-Risk and WLS cohorts (combined \(n = 11,351 \)). The goal of our GWAS-by-subtraction analysis was to exclude, as much as possible, genetic variance in cognitive ability from genetic variance in skills relevant for education. Consistent with this goal, effect sizes for \textit{NonCog} PGS associations with full-scale intelligence quotient (IQ) were smaller by half compared with \textit{Cog} PGS associations (\begin{math} \text{NonCog} \beta = 0.17 \text{ (s.e.} = 0.02), \text{Cog} \beta = 0.29 \text{ (s.e.} = 0.03), P_{\text{diff}} < 0.0001). \end{math} However, the non-zero correlation between the \textit{NonCog} PGS and full-scale IQ is a reminder that the cognitive performance GWAS used in our GWAS-by-subtraction analyses does not capture the entirety of genetic influences on all forms of cognitive tests measured at all points in the lifespan. Additional PGS analyses of IQ subscales are reported in Supplementary Fig. 10 and Supplementary Tables 11 and 12.

We conducted complementary genetic correlation analysis using results from a published GWAS of childhood IQ35. Parallel to PGS analysis, the \textit{NonCog} genetic correlation with childhood IQ was smaller by more than half compared with the \textit{Cog} genetic correlation (\begin{math} \text{NonCog} r_g = 0.31 \text{ (s.e.} = 0.06), \text{Cog} r_g = 0.75 \text{ (s.e.} = 0.08), P_{\text{diff}} \text{fdr} < 0.0001). \end{math} Of the total genetic correlation between childhood IQ and educational attainment, 31% of the covariance was explained by \textit{NonCog} and 69% by \textit{Cog}.

We next examined downstream economic and health outcomes associated with greater educational attainment36,37. In the PGS analysis in the AddHealth and Dunedin cohorts (\(n = 6,358 \)), \textit{NonCog} and \textit{Cog} PGSs showed similar associations with occupational attainment (\begin{math} \text{NonCog} \beta = 0.21 \text{ (s.e.} = 0.01), \text{Cog} \beta = 0.21 \text{ (s.e.} = 0.01), P_{\text{diff}} = 0.902). \end{math} In genetic correlation analysis, \textit{NonCog} showed a
similar relationship to income\(^{18}\) to Cog (NonCog \(r_g = 0.62\) (s.e. = 0.04), Cog \(r_g = 0.62\) (s.e. = 0.04), \(P_{\text{diff.s.e.}} = 0.947\)) and a stronger relationship with neighborhood deprivation\(^{46}\), a measure related to where a person can afford to live (NonCog \(r_g = -0.51\) (s.e. = 0.05), Cog \(r_g = -0.32\) (s.e. = 0.04), \(P_{\text{diff.s.e.}} = 0.001\)). In Genomic-SEM analysis, NonCog explained 53% of the genetic correlation between educational attainment and income, and 65% of the genetic correlation between educational attainment and neighborhood deprivation (Supplementary Table 15).

We conducted genetic correlation analysis of longevity based on GWASs of parental lifespan\(^{39}\). Genetic correlations were stronger for NonCog compared with Cog (NonCog \(r_g = 0.37\) (s.e. = 0.03); Cog \(r_g = 0.27\) (s.e. = 0.03); \(P_{\text{diff.s.e.}} = 0.024\)). In Genomic-SEM analysis, NonCog explained 61% of the genetic correlation between educational attainment and longevity.

In summary, NonCog and Cog genetics showed similar relationships with educational attainment and its long-term outcomes, despite NonCog genetics having a much weaker relationship to measured cognitive test performance than Cog genetics. These findings broadly support the hypothesis that noncognitive skills, distinct from cognitive abilities, are an important contributor to success across the life course.

We next conducted a series of genetic correlation analyses to explore the network of phenotypes to which NonCog was genetically correlated. To develop understanding of the substance of noncognitive skills, we tested where in that network of phenotypes genetic correlations with NonCog diverged from genetic correlations with Cog. Our analysis was organized around four themes: decision-making preferences, health-risk and fertility behaviors, personality traits and psychiatric disorders. The results of genetic correlation analyses are shown in Fig. 4 and Supplementary Fig. 11, and reported in Supplementary Table 14.

NonCog genetics were associated with decision-making preferences. In economics, noncognitive influences on achievement and health are often studied in relation to decision-making preferences\(^{40-43}\). NonCog was genetically correlated with higher tolerance of risks\(^{46}\) (\(r_g = 0.10\) (s.e. = 0.03)) and willingness to forgo immediate gratification in favor of a larger reward at a later time\(^{45}\) (delay discounting \(r_g = -0.52\) (s.e. = 0.08)). In contrast, Cog was genetically correlated with generally more cautious decision-making characterized by lower levels of risk tolerance (\(r_g = -0.35\) (s.e. = 0.07), \(P_{\text{diff.s.e.}} < 0.0001\)) and delayed discounting (\(r_g = -0.35\) (s.e. = 0.07), \(P_{\text{diff.s.e.}} = 0.082\)).
NonCog genetics were associated with less health-risk behavior and delayed fertility. An alternative approach to studying specific noncognitive skills is to infer individual differences in noncognitive skills from patterns of health-risk behavior. **NonCog** was genetically correlated with less health-risk behavior, as indicated by analysis of obesity⁴⁶, substance use ⁴⁴–⁵⁰, and sexual behaviors and early SES-related DecisionHealth-risk behavior & delayed fertilityPersonalityPsychiatry
Household income
Neighborhood deprivation
Longevity
General risk tolerance
Delay discounting
Risk behavior composite
Speeding propensity
Ever smoker
Age at smoking initiation
Cigarettes per day
Alcohol use
Drinks per week
Alcohol dependence
Cannabis use
Age at menarche
Age at first sex
Number of sexual partners
Age at first birth—women
Age at first birth—men
Number children ever born—women
Number children ever born—men
Age at menopause
Openness
Conscientiousness
Extraversion
Agreeableness
Neuroticism
Schizophrenia
Bipolar disorder
Obsessive–compulsive disorder
Anorexia nervosa
Attention deficit hyperactivity disorder
Major depressive disorder
Autism spectrum disorder

Fig. 4 | Estimates of genetic correlations with **NonCog**, **Cog** and educational attainment. Genetic correlations of **NonCog**, **Cog** and educational attainment with selected phenotypes. The dots represent genetic correlations estimated in Genomic-SEM. Correlations with **NonCog** are in orange, with **Cog** in blue and with educational attainment in gray. Error bars represent 95% CIs. Red stars indicate a statistically significant (FDR-corrected $P < 0.05$, two-tailed test) difference in the magnitude of the correlation with **NonCog** versus **Cog**. Exact P values for all associations are reported in Supplementary Table 14. The FDR correction was applied based on all genetic correlations tested (including in Supplementary Fig. 11). The difference test is based on a χ^2 test associated with a comparison between a model constraining these two correlations to be identical versus a model where the correlations are freely estimated. SES, socioeconomic status. Source GWASs are listed in Supplementary Table 13.
fertility\(^{45,51,52}\) (\(r_g\) range 0.2–0.5), with the exception that the \(r_g\) with alcohol use was not different from zero and \(r_g\) with cannabis use was positive. Genetic correlations for \(\text{Cog}\) were generally in the same direction but of smaller magnitude.

NonCog genetics were associated with personality characteristics linked with social and professional competency. In psychology, noncognitive influences on achievement are conceptualized as personality traits, that is, patterns of stable individual differences in emotion and behavior. The model of personality that has received the most attention in genetics is a five-factor model referred to as the Big Five. Genetic correlation analysis of the Big Five personality traits\(^{60,68,69}\) revealed that NonCog genetics were most strongly associated with Openness to Experience (being curious and eager to learn; \(r_g = 0.30\) (s.e. = 0.04)) and were further associated with a pattern of personality characteristic of changes that occur as people mature in adulthood\(^{40}\). Specifically, NonCog showed a positive \(r_g\) with Conscientiousness (being industrious and orderly; \(r_g = 0.13\) (s.e. = 0.03)), Extraversion (being enthusiastic and assertive; \(r_g = 0.14\) (s.e. = 0.03)), and Agreeableness (being polite and compassionate; \(r_g = 0.14\) (s.e. = 0.05)), and negative \(r_g\) with Neuroticism (being emotionally volatile; \(r_g = -0.15\) (s.e. = 0.04)). Genetic correlations of Cog with Openness to Experience and Neuroticism were similar to those for NonCog (\(P_{\text{diff}}_\text{Openness} = 0.040, P_{\text{diff}}_\text{Neuroticism} = 0.470\)). In contrast, genetic correlations of Cog with Conscientiousness, Extraversion and Agreeableness were in the opposite direction (\(r_g = -0.25\) to –0.12, \(P_{\text{diff}}_\text{Openness} < 0.0005\)). PGS analysis of personality traits is reported in Supplementary Table 12, Supplementary Fig. 12 and the Supplementary Note.

NonCog genetics were associated with higher risk for multiple psychiatric disorders. In clinical psychology and psychiatry, research is focused on mental disorders. Mental disorders are generally associated with impairments in academic achievement and social role functioning\(^{34,35}\). However, positive genetic correlations with educational attainment and creativity have been reported for some disorders\(^{53–55}\). We therefore tested NonCog \(r_g\) with psychiatric disorders based on published case–control GWASs of mental disorders\(^{41–92}\). NonCog was associated with higher risk for multiple clinically defined disorders, including anorexia nervosa (\(r_g = 0.26\) (s.e. = 0.04)), obsessive–compulsive disorder (\(r_g = 0.31\) (s.e. = 0.06)), bipolar disorder (\(r_g = 0.27\) (s.e. = 0.03)) and schizophrenia (\(r_g = 0.26\) (s.e. = 0.02)). Genetic correlations between Cog and psychiatric disorders were either smaller in magnitude (anorexia nervosa \(r_g = 0.08\) (s.e. = 0.03), \(P_{\text{diff}}_\text{Anorexia nervosa} < 0.001\); obsessive–compulsive disorder \(r_g = 0.05\) (s.e. = 0.05), \(P_{\text{diff}}_\text{OCD} = 0.002\)) or in the opposite direction (bipolar disorder \(r_g = -0.07\) (s.e. = 0.03), \(P_{\text{diff}}_\text{Bipolar} < 0.001\); schizophrenia \(r_g = -0.22\) (s.e. = 0.02), \(P_{\text{diff}}_\text{Schizophrenia} < 0.001\)). Both NonCog and Cog showed negative genetic correlations with attention deficit hyperactivity disorder (NonCog \(r_g = -0.37\) (s.e. = 0.03), Cog \(r_g = -0.37\) (s.e. = 0.04), \(P_{\text{diff}}_\text{ADHD} = 0.947\)).

In summary, NonCog genetics were associated with phenotypes from economics and psychology thought to mediate noncognitive influences on educational success. These associations contrasted with associations for Cog genetics, supporting distinct pathways of influence on achievement in school and later in life. Opposing patterns of association were also observed for psychiatric disorders, suggesting that the unexpected positive genetic correlation between educational attainment and mental health problems uncovered in previous studies\(^{50,62,63}\) arises from noncognitive genetic influences on educational attainment.

Biological annotation analyses reveal shared and specific neurobiological correlates. The goal of biological annotation of GWAS discoveries is to elucidate molecular mechanisms mediating genetic influences on the phenotype of interest. Our biological annotation analysis proceeded in two steps. First, we conducted enrichment analysis to test whether some tissues and cell types were more likely to mediate NonCog and Cog heritabilities than others. Second, we conducted genetic correlation analysis to explore how NonCog and Cog genetics related to different brain structures.

NonCog and Cog genetics were enriched in similar tissues and cells. We tested whether common variants in genes specifically expressed in 53 Genotype-Tissue Expression (GTEx) tissues\(^{48}\) or in 152 tissues captured in a previous aggregation of RNA-sequencing studies\(^{125}\) were enriched in their effects on Cog or NonCog. Genes predominantly expressed in the brain rather than peripheral tissues were enriched in both NonCog and Cog (Supplementary Table 16).

To examine expression patterns at a more granular level of analysis, we used MAGMA\(^{126}\) and stratified the LD score regression (LDSC)\(^{45}\) to test enrichment of common variants in 265 nervous system, cell-type-specific gene sets\(^{127}\) (Supplementary Table 17). In MAGMA analysis, common variants in 95 of 265 gene sets were enriched for association with NonCog. The enriched cell types were predominantly neurons (97%), with enrichment most pronounced for telencephalon-projecting neurons, di- and mesencephalon neurons, and, to a lesser extent, telencephalon interneurons (Supplementary Fig. 13 and Supplementary Table 18). Enrichment for Cog was similar to NonCog (correlation between \(z\)-statistics Pearson's \(r = 0.85\)), and there were no differences in cell-type-specific enrichment, suggesting that the same types of brain cells mediate genetic influences on NonCog and Cog (Supplementary Fig. 14). Stratified LDSC results were similar to results from MAGMA (Supplementary Note, Supplementary Fig. 15 and Supplementary Table 19).

The absence of differences in cell-type-specific enrichment is surprising given that NonCog and Cog are genetically uncorrelated. Therefore we used the TWAS/Fusion tool\(^{128}\) to conduct gene-level analysis. This analysis revealed a mixture of concordant and discordant gene effects on NonCog and Cog consistent with the genetic correlation of 0 (Supplementary Note, Supplementary Fig. 16 and Supplementary Table 20).

NonCog and Cog genetics show diverging associations with total and regional brain volumes. Educational attainment has previously been found to be genetically correlated with greater total brain volume\(^{72,74}\). We therefore used a GWAS of regional brain volume to compare the \(r_g\) of NonCog and Cog with total brain volume and 100 regional brain volumes (99 gray-matter volumes and 1 white-matter volume) controlling for total brain volume (Supplementary Table 21\(^{128}\)). For total brain volume, genetic correlation was stronger for Cog compared with NonCog (Cog \(r_g = 0.22\) (s.e. = 0.04), NonCog \(r_g = 0.07\) (s.e. = 0.03), \(P_{\text{diff}} = 0.005\)). Total gray-matter volume, controlling for total brain volume, was not associated with either NonCog or Cog (NonCog: \(r_g = 0.07\) (s.e. = 0.04); Cog: \(r_g = 0.06\) (s.e. = 0.04)). For total white-matter volume, conditional on total brain volume, genetic correlation was weakly negative for NonCog compared with Cog (NonCog \(r_g = -0.12\) (s.e. = 0.04), Cog \(r_g = -0.01\) (s.e. = 0.04), \(P_{\text{diff}} = 0.04\)).

NonCog was not associated with any of the regional gray-matter volumes after false discovery rate (FDR) correction. In contrast, Cog was significantly associated with regional gray-matter volumes for the bilateral fusiform, insula and posterior cingulate (\(r_g\) range 0.11–0.17), as well as the left superior temporal (\(r_g = 0.11\) (s.e. = 0.04)), left pericalcarine (\(r_g = -0.16\) (s.e. = 0.05)) and right superior parietal volumes (\(r_g = -0.22\) (s.e. = 0.06)) (Fig. 5).

Finally, we tested genetic correlation of NonCog and Cog with white-matter tract integrity as measured using diffusion tensor imaging (DTI)\(^{129}\). Analyses included 5 DTI parameters in each of 22 white-matter tracts (Supplementary Table 22). NonCog was positively associated with the mode of anisotropy (MO) parameter (which denotes a more tubular, as opposed to planar, water...
In genetic correlation and PGS analysis, these NonCog genetics were associated with higher decision-making preferences, NonCog genetics were also associated with healthier behavior and later fertility.

Psychologists hypothesize that the Big Five personality characteristics of conscientiousness and openness are the two 'pillars of educational success'\(^2\). Our results provide some support for this hypothesis, with the strongest genetic correlation evident for openness. However, they also show that noncognitive skills encompass the full range of personality traits, including agreeableness, extraversion and the absence of neuroticism. This pattern mirrors the pattern of personality change that occurs as young people mature into adulthood\(^{16}\). Thus, noncognitive skills share genetic etiology with what might be termed a 'mature personality'. The absolute magnitudes of genetic correlations between NonCog and individual personality traits are modest. This result suggests that the personality traits described by psychologists capture some, but not all, genetic influence on noncognitive skills.

Although the general pattern of findings in our phenotypic annotation analysis indicated that noncognitive skills were genetically related to socially desirable characteristics and behaviors, there was an important exception. Genetic correlation analysis of a psychiatric disorder GWAS revealed positive associations of NonCog genetics with schizophrenia, bipolar disorder, anorexia nervosa and obsessive–compulsive disorder. Previously, these psychiatric disorders have been shown to have a positive \(r\) with educational attainment, a result that has been characterized as paradoxical given the impairments in educational and occupational functioning typical of serious mental illness. Our results clarify that these associations are driven by noncognitive factors associated with success in education. These results align with the theory that clinically defined psychiatric
disorders represent extreme manifestations of dimensional psychological traits, which might be associated with adaptive functioning within the normal range.83–85.

Finally, biological annotation analyses suggested that genetic variants contributing to educational attainment not mediated through cognitive abilities are enriched in genes expressed in the brain, specifically in neurons. Even though NonCog and Cog were genetically uncorrelated, variants in the same neuron-specific gene sets were enriched for both traits. Although we found some evidence of differences between NonCog and Cog in associations with gray-matter volumes, moderate sample sizes in neuroimaging GWASs mean that these results must be treated as preliminary, requiring replication with data from larger-scale GWASs of white-matter and gray-matter phenotypes. Limited differentiation of NonCog and Cog in biological annotation analyses focused at the levels of tissue and cell type highlights the need for finer-grained molecular data resources to inform these analyses and the complementary value of phenotypic annotation analyses focused at the level of psychology and behavior.

We acknowledge limitations. Cognitive and noncognitive skills develop in interaction with each other. For example, the dynamic mutualism hypothesis proposes that noncognitive characteristics shape investments of time and effort, leading to differences in the pace of cognitive development. However, in Genomic-SEM analysis, the NonCog factor is, by construction, uncorrelated with genetic influences on adult cognition as measured in the Cog GWAS. Our statistical separation of NonCog from cognition is thus a simplified representation of development. Longitudinal studies with repeated measures of cognitive and candidate noncognitive skills are needed to study their reciprocal relationships across development. Our statistical separation of NonCog from cognition is also incomplete. The ability to control statistically for any variable, genetic or otherwise, depends on how well and comprehensively that variable is measured. The tests of cognitive performance included in the Cog GWAS probably do not capture all genetic influences on all forms of cognitive ability across the lifespan. Despite these limitations, our simplified and incomplete statistical separation of NonCog from Cog allowed us to test whether heritable traits other than cognitive ability influenced educational attainment and to explore what those traits might be.

As our analysis was based on GWAS of educational attainment, noncognitive genetics identified in the present study may differ from noncognitive genetics affecting other socioeconomic attainments such as income, or traits and behaviors that mediate responses to early childhood interventions, to the extent that those genetics do not affect educational attainment. Parallel analysis of alternative attainment phenotypes will clarify the specificity of discovered noncognitive genetics.

In the case of GWASs of educational attainment, the included samples were drawn mainly from western Europe and the USA, and participants completed their education in the late twentieth and early twenty-first centuries. The phenotype of educational attainment reflects an interaction between an individual and the social systems, including education policy, culture and historical context, which may result in different heritable traits influencing educational attainment. Results therefore may not generalize beyond the times and places where GWAS samples were collected.

Generalization of the NonCog factor is also limited by restriction of the included GWASs to individuals of European ancestry. Lack of methods for integrating genome-scale genetic data across populations with different ancestries requires this restriction, but raises threats to external validity. GWASs of other ancestries and development of methods for trans-ancestry analysis can enable analysis of (Non)Cog in non-European populations.

Within the bounds of these limitations, the results illustrate the application of Genomic-SEM to conduct GWASs of a phenotype not directly measured in GWAS databases. This application could have broad utility beyond the genetics of educational attainment. The GWAS-by-subtraction method allowed us to study a previously hard-to-interpret residual value. Our analysis provides a view of the genetic architecture of noncognitive skills influencing educational success. These traits are central to theories of human capital formation within the social and behavioral sciences and are increasingly the targets of social policy interventions. Our results establish that noncognitive skills are central to the heritability of educational attainment and illuminate connections between genetic influences on these skills and social and behavioral science phenotypes.

Online content
Any methods, additional references, Nature Research reporting summaries, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41588-020-00754-2.

Received: 19 March 2020; Accepted: 19 November 2020; Published online: 7 January 2021

References

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
GWAS-by-subtraction. The objective of our GWAS-by-subtraction analysis was to estimate, for each SNP, the association with educational attainment that was independent of that SNP’s association with cognition (hereafter, the NonCog SNP effect). We used Genomic-SEM in R v.3.4.3 to analyze GWAS summary statistics for the educational attainment and cognitive performance phenotypes in the SSSGC’s 2018 GWAS.31 The model regressed the educational attainment and cognitive performance summary statistics on two latent variables, Cog and NonCog (Fig. 1). Cog and NonCog were then regressed on each SNP in the genome. This analysis allowed for two paths of association with educational attainment for each SNP. One path was fully mediated by Cog. The other path was independent of Cog and measured the noncognitive SNP effect, NonCog. To identify independent hits with \(P < 5 \times 10^{-4} \) (the customary \(P \)-value threshold to approximate an \(\alpha \) value of 0.05 in GWAS), we pruned the results using a radius of 250 kb and an LD threshold of \(r^2 < 0.1 \) (Supplementary Tables 1–3). We explore alternative lead SNPs and definitions of Cog and NonCog in Supplementary Table 3. The parameters estimated in a GWAS-by-subtraction and their derivation in terms of the genetic covariance are described in the Supplementary Note (model specification), and practical analysis steps are further described in the Supplementary Note (SNP filtering).

The effective sample size of the NonCog and Cog GWAS was estimated to 510,795 and 257,700, respectively (Supplementary Note). We investigated biases from unaccounted-for heterogeneity in overlap across SNPs in the educational attainment and cognitive performance GWASs, and describe a possible strategy to deal with it (Supplementary Note). We investigated potential biases due to cohort differences in SNP heritability in the Supplementary Note. We evaluated the consequences of modifying \(r_\alpha(\text{NonCog}, \text{Cog}) = 0 \) by evaluating \(r_\alpha = 0.1, 0.2 \) or 0.3, and we investigated the consequences of a violation of the assumed causation between cognitive performance and educational attainment in the Supplementary Note.

Genetic correlations. We used Genomic-SEM to compute genetic correlations of Cog and NonCog with other education-linked traits for which well-powered GWAS data were available (SNP-heritability > 0.2; Supplementary Table 13) and to test whether genetic correlations with these traits differed between Cog and NonCog. Specifically, models tested the null hypothesis that trait genetic correlations with Cog and NonCog could be constrained to be equal using a \(\chi^2 \) test with FDR adjustment to correct for multiple testing. The FDR adjustment was conducted across all genetic correlation analyses reported in the article, excluding the analyses of brain images described below. Finally, we used Genomic-SEM analysis of genetic correlations to estimate the percentage of the genetic covariance between educational attainment and the target traits that was explained by Cog and NonCog, using the model illustrated in Supplementary Figure 17.

PGS analysis. PGS analyses were conducted in data drawn from six population-based cohorts from the Netherlands, the UK, the USA and New Zealand: (1) the NTR21,22, (2) E-Risk23, (3) the Texas Twin Project24, (4) the AddHealth25,26, dbGaP accession no. phs001367.v1.p1; (5) WLS26, dbGaP accession no. phs001157.v1.p1; and (6) the Dunedin Multidisciplinary Health and Development Study27. Supplementary Tables 9 and 10 describe cohort-specific PGS definitions of loci in Supplementary Table 4. The parameters estimated in LD-pred weights computation and cognitive performance GWASs, and describe a possible strategy to deal with it (Supplementary Note). We investigated potential biases due to cohort differences in SNP heritability in the Supplementary Note. We evaluated the consequences of modifying \(r_\alpha(\text{NonCog}, \text{Cog}) = 0 \) by evaluating \(r_\alpha = 0.1, 0.2 \) or 0.3, and we investigated the consequences of a violation of the assumed causation between cognitive performance and educational attainment in the Supplementary Note.

Enrichment of cell-type-specific expression. We leveraged single-cell RNA-sequencing data of cells sampled from the mouse nervous system to identify cell-type-specific RNA expression. Zeisel et al. sequenced cells obtained from 19 regions in the contiguous anatomical regions in the peripheral sensory, enteric and sympathetic nervous systems. After initial quality control, they retained 492,949 cells, which were sampled down to 160,796 high-quality cells. These cells were further grouped into clusters representing 263 broad cell types. We analyzed the dataset published by Zeisel et al. containing mean transcript counts for all genes with count >1 for each of the 263 clusters (Supplementary Table 17). We restricted analysis to genes with expression levels above the 25th percentile. For each gene in each cell type, we computed the cell-type-specific proportion of reads for the gene (normalizing the expression within cell type). We then computed the proportion of proportions over the 265 cell types (computing the specificity of the gene to a specific cell type). We ranked the 12,119 genes retained in terms of specificity to each cell type and then retained the 10% of genes most specific to a cell type as the ‘cell-type-specific’ gene set. We then tested whether any of the 265 cell-type-specific gene sets were enriched in the Cog or NonCog GWASs. This analysis sought to identify specific cell types and specific regions in the brain involved in the etiology of Cog and NonCog. We further computed the difference in enrichment for Cog and NonCog to test whether any cell types were specific to either trait. For these analyses, we leveraged two widely used enrichment analysis tools: MAGMA28 and stratified LDSC29 with the European reference panel from the 1000 Genomes Project phase 3 as SNP location and LD structure reference. Genocore release 19 as gene location reference and the human–mouse homology resource from MG1 (http://informatics.jax.org/downloads/reports/HOM-MouseHumanSequence.rpt).

MAGMA. We used MAGMA (v.1.07b)30, a program for gene-set analysis based on GWAS summary statistics. We computed gene-level association statistics using a window of 10 kb around the gene for both Cog and NonCog. We then used MAGMA to run a competitive gene-set analysis, using the gene \(P \) values and gene-correlation matrix (reflecting LD structure) produced in the gene-level analysis. The competitive gene-set analysis tests whether the genes within the cell-type-specific gene set described in Enrichment of cell-type-specific expression are more strongly associated with Cog/NonCog than other genes.

Stratified LDSC. We used LDSC to compute LD scores for the SNPs in each of our ‘cell-type-specific’ gene sets. Parallel to MAGMA analysis, we added a 10-kb window around each gene. We ran partitioned LDSC to compute the contribution of each gene set to the heritability of Cog and NonCog. To guard against inflation, we used LD score best practices, and included the LD score baseline model (baseline.LD.v2.2) in the analysis. We judged the statistical significance of the enrichment based on the \(P \) value associated with the tau coefficient.

Difference in enrichment between Cog and NonCog. To compute differences in enrichment, we compute a standardized difference between the per-annotation enrichment for Cog and NonCog as:

\[
Z_{\text{diff}} = \frac{e_{\text{Cog}} - e_{\text{NonCog}}}{\text{se}(e_{\text{Cog}} \pm e_{\text{NonCog}})} \cdot \text{CTI} \cdot s_e(cog \times s_e(\text{NonCog}))
\]

where \(e_{\text{Cog}} \) is the enrichment of a particular gene set for Cog, \(e_{\text{NonCog}} \) is the enrichment for the same gene set for NonCog, \(s_e(cog) \) is the standard error of the enrichment for Cog, \(s_e(\text{NonCog}) \) is the standard error of the enrichment for NonCog and CTI is the LD score cross-trait intercept, a metric of dependence between the GWASs of Cog and NonCog.

We investigated the significance of the difference between Cog and NonCog tau coefficients (with equation (1)) as well as by computing jack-knifed standard errors. From the jack-knifed estimates of the coefficient output by the LDSC software, we computed the jack-knifed estimates and standard errors of the difference between Cog and NonCog tau coefficients, as well as a \(z \)-statistic for each annotation.

Enrichment of gene expression in the brain. We performed a transcriptionome-wide association study (TWAS) using FUSION31 (http://gusevlab.org/projects/fusion). We used pre-computed brain–gene expression weights available on the FUSION website, generated from 452 human individuals as part of the CommonMind Consortium. We then superimposed the bivariate distribution of the results of the TWAS for Cog and NonCog over the bivariate distribution expected, given the same overlap between educational attainment and cognitive performance (the GWAS on which our GWASs of Cog and NonCog are based; Supplementary Note).

Brain modalities. Brain volumes. We conducted genetic correlation analysis of brain volumes using GWAS results published by Zhao et al.32, who performed

Biological annotation. Enrichment of tissue-specific gene expression. We used gene sets defined in Finucane et al.33 to test for the enrichment of genes specifically expressed in 1 of 53 GTEx tissues34, or 152 tissues captured by the Franke et al. aggregation of RNA-sequencing studies35. This analysis seeks to confirm the role of brain tissues in mediating Cog and NonCog influences on educational attainment. The exact analysis pipeline used is available online (https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses).
GWASs of total brain volume and 100 regional brain volumes, including 99 gray-matter volumes and total white-matter volume (Supplementary Table 21). Analyses included covariate adjustment for sex, age, their square interaction and 20 principal components. Analyses of regional brain volumes additionally included covariate adjustment for total brain volume. GWAS summary statistics for these 101 brain volumes were obtained from https://med.sites.ucd.edu/big2/data/gwas-summary-statistics. Summary statistics were filtered and pre-processed using Genomic-SEM’s ‘munge’ function, retaining all HapMap3 SNPs with allele frequency >0.01 outside the major histocompatibility complex region. We used Genomic-SEM to compute the genetic correlations of Cog, NonCog and brain volumes. Analyses of regional volumes controlled for total brain volume. For each volume, we tested whether correlations differed between Cog and NonCog. Specifically, we used a z-test to evaluate the null hypothesis that the two genetic correlations were equal. We used FDR adjustment to correct for multiple testing. The FDR adjustment is applied to the results for all gray-matter volumes for Cog and NonCog separately.

White-matter structures. We conducted genetic correlation analysis of white-matter structures using GWAS results published by Zhao et al., who performed GWASs of DTI measures of the integrity of white-matter tracts. DTI parameters were derived for fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity and MO. Each of these parameters was measured for 22 white-matter tracts of interests (Supplementary Table 22), resulting in 110 GWASs. GWAS summary statistics for these 110 GWASs were obtained from https://med.sites.ucd.edu/big2/data/gwas-summary-statistics. Summary statistics were filtered and pre-processed using Genomic-SEM’s ‘munge’ function, retaining all HapMap3 SNPs with allele frequency >0.01 outside the major histocompatibility complex region. For each white-matter structure, we tested whether genetic correlations differed between Cog and NonCog. Specifically, we used a z-test to evaluate the null hypothesis that the two genetic correlations were equal. We used FDR adjustment to correct for multiple testing. As these different diffusion parameter statistics are statistically and logically interdependent, having been derived from the same tensor, FDR adjustment was applied to the results for each type of white-matter diffusion parameter separately. FDR adjustment was applied separately for Cog and NonCog.

Additional resources to Genomic-SEM software include:

- A wiki including numerous tutorials: https://github.com/MichelNivard/GenomicSEM/wiki
- A Genomic-SEM user group for specific questions relating to models and software: https://groups.google.com/g/genomic-sem-users
- A venue to report technical issues: https://github.com/MichelNivard/GenomicSEM/issues

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
GWAS summary data for NonCog and Cog (excluding 23andMe) have been deposited in the GWAS catalog with accession nos. GCST90011874 and GCST90011875, respectively (NonCog GWAS: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90011874, Cog GWAS: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90011875). For 23andMe dataset access, see https://research.23andme.com/dataset-access. Part of the AddHealth data is publicly available and can be downloaded at the following link: https://data.cpc.unc.edu/projects/2/view#public_li. For restricted access data, details of the data-sharing agreement and data access requirements can be found at the following link: https://data.cpc.unc.edu/projects/2/view. The Dunedin study datasets reported in the current article are not publicly available due to lack of informed consent and ethical approval, but are available on request by qualified scientists. Requests require a concept paper describing the purpose of data access, ethical approval at the applicant’s university and provision for secure data access. We offer secure access on the Duke, Otago and King’s College campuses. All data analysis scripts and results files are available for review (https://modifitcaspi.trinity.duke.edu/research-topics/crisk). NTR data may be accessed, on approval of the data access committee (email: ntr.datamanagement.fgb@vu.nl). Researchers will be able to obtain Texas Twins data through managed access. Requests for managed access should be sent to E. Tucker-Drob (tuckerdrob@utexas.edu) and P. Harden (harden@utexas.edu), joint principal investigators of the Texas Twin Project. The WLS data can be requested by sending your request to https://www.uwisc.wisc.edu/wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf.

Code availability
Code used to run the analyses is available at https://github.com/PerlmeDemange/non-cognitive. A tutorial on how to perform GWAS-by-subtraction is available at http://rpubs.com/MichelNivard/565888. All additional software used to perform these analyses is available online.

References

Acknowledgements
The present study was developed with support from the Jacobs Foundation at a meeting organized by D.W.B. and E.R. E.M.T.-D. and C.M. provided support, and co-authored B.W.D., J.W., M.G.N. and P.B. also attended. We thank K. Mannik and F. Tropp for contributions to the meeting, and the Jacobs Foundation Fellowship team, who made the meeting possible. D.W.B., K.P.H., M.G.N., E.M.T.-D. and C.M. are fellows of the Foundation. J.W. is a Jacobs Foundation Young Scholar. The present study used GWAS summary statistics published by the SSGAC and additional data obtained from 23andMe. We thank the research participants and employees of 23andMe for making this work possible. We thank the SSGAC and COGENT consortia for sharing their summary statistics of the GWASs of educational attainment and cognitive performance, especially A. Okbay for her quick and repeated help with providing these data. The present study used data from the NTR, the Texas Twin Study, the AddHealth, the Dunedin Longitudinal Study, the E-Risk Study and the WLS. The NTR is supported by: "Twin-family database for behavior genetics and genomics studies" (NWO 480-04-004), Longitudinal data collection from teachers of Dutch twins and their siblings (NWO-481-08-011); Twin-family study of individual differences in school achievement (NWO 056-32-010) and Gravitation program of the Dutch Ministry of Education, Culture and Science and the Netherlands Organization for Scientific Research (NWO 0240-001-003); NWO Grant (480-15-001-674); Netherlands Twin Registry Repository: researching the interplay between genome and environment; NWO-Spt-56-464-14192 Biobanking and Biomolecular Resources Research Infrastructure (BBMRI—NL, 184.021.007 and 184.033.111); European Research Council (ERC-23074); the Aveira Institute for Human Genetics, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH, R01HD042157-01A); and the National Institute of Mental Health Grand Opportunity grants (grant nos. 1R21MH088951-01 and 1R2C MH089955-01). The Texas Twin Project is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development grants (nos. R01HD083613 and R01HD092548). AddHealth is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development grant (no. P01HD331921), and GWAS grants (nos. R01HD073342 and R01HD060726), with cooperative funding from 23 other federal agencies and foundations. The Dunedin Multidisciplinary Health and Development Study is supported by the NZ HRC, NZ MBE, National Institute on Aging grant (no. R01AG032882), and a UK Medical Research Council grant (no. MR/P005918/1). The E-Risk Study is supported by a UK Medical Research Council grant (no. G1002190) and Eunice Kennedy Shriver National Institute of Child Health and Human Development grant (no. R01HD077482). The WLS is supported by National Institute on Aging grants (nos. R01AG041868 and P30AG017266). Some of the work used a high-performance computing facility partially supported by grant no. 2016-IDG-1013 from the North Carolina Biotechnology Center. The Population Research Center at the University of Texas at Austin is supported by the National Institute on Aging grant no. P2CHD040489. P.A.D. is supported by the Netherlands Organisation for Health Research and Development (ZonMW). P.B. is supported by the NORFACE-DIAL grant no. 462-16-100. S.R.C. is supported by the UK Medical Research Council grant no. MR/R024605/1 and NIH grant no. R01AG056428. E.M.T.-D. is supported by NIH grant nos. R01AG056428 and R01HD036813. A. A. is supported by the Foundation Volskobond Rotterdam supported by ZonMw (grant no. 84920011). E.R. is supported by NWO VENI (grant no. 451-15-017). D.W.B. acknowledges the Royal Netherlands Academy of Science (KNAW) Professor Award (PAH/6635). B.W.D. is supported by award no. 96-17-04.
from the Russell Sage Foundation and the Ford Foundation. H.E.I. was supported by the Aggression in Children: Unraveling gene-environment interplay to inform Treatment and Intervention strategies project (ACTION). ACTION received funding from the European Union Seventh Framework Program (FP7/2007–2013) under grant agreement no. 602768. J.W. is supported by a postdoctoral fellowship by the AXA Research Fund. D.W.B. is a fellow of the Canadian Institute for Advanced Research Child Brain Development Network. K.P.H. and E.M.T.-D. are Faculty Research Associates of the Population Research Center at the University of Texas at Austin, which is supported by a grant (no. 5-R24-HD042849) from the Eunice Kennedy Shriver National Institute of Child Health and Human Development. M.G.N. is supported by ZonMW grants (nos. 849200011 and 531003014), a VENI grant awarded by NWO (VI.Veni.191 G.030) and an NIH grant (no. R01MH120219).

Author contributions

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41588-020-00754-2.

Correspondence and requests for materials should be addressed to D.W.B., K.P.H. or M.G.N.

Peer review information Nature Genetics thanks David Cesarini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

No software was used for data collection.

Data analysis

- Meta-analysis of summary statistics was performed with MetaX, release 2011-03-25.
- The GWAS-by-subtraction and genetic correlation analyses were performed with GenomicSEM v0.0.2, in R 3.4.3. Clumping was performed with Plink 1.9.
- LD score regressions were done using LDSC v1.0.0.
- Polygenic scores weights were calculated using LDpred v0.9.09, scores were built with Plink 1.9. Prediction analyses were executed in R for NTR, AddHealth and the Texas Twin Project cohorts, Stata 14 for WLS, and Stata 15 for E-Risk and Dunedin.
- Bioannotation analyses were done with MAGMA v1.07, stratified LD score regression (LDSC), and FUSION software R package (downloaded on the 22/07/19).
- Genotyping platform and imputation software for each cohort are described in Supplementary Table 7.
- Code used to run the analyses is available at: https://github.com/PerlineDemange/non-cognitive
- A tutorial on how to perform GWAS-by-subtraction: http://rpubs.com/MichelNivard/565885

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

GWAS summary data for NonCog & Cog (excluding 23andMe) are available at: https://www.dropbox.com/s/fry5f82zpfc0r3w/GWAS_sumstats_Cog_NonCog_Demange_et_al_20200806.zip?dl=0

For 23AndMe dataset access, see https://research.23andme.com/dataset-access/.

Part of the National Longitudinal Study of Adolescent to Adult Health (Add Health) data is publicly available and can be downloaded at the following link: https://data.cpc.unc.edu/projects/2/view#public_li. For restricted access data, details of the data sharing agreement and data access requirements can be found at the following link: https://data.cpc.unc.edu/projects/2/view

The Dunedin study datasets reported in the current article are not publicly available due to lack of informed consent and ethical approval, but are available on request by qualified scientists. Requests require a concept paper describing the purpose of data access, ethical approval at the applicant’s university, and provision for secure data access. We offer secure access on the Duke, Otago and King’s College campuses. All data analysis scripts and results files are available for review. https://moffittcaspi.trinity.duke.edu/research-topics/dunedin

The E-Risk Longitudinal Twin Study datasets reported in the current article are not publicly available due to lack of informed consent and ethical approval, but are available on request by qualified scientists. Requests require a concept paper describing the purpose of data access, ethical approval at the applicant’s university, and provision for secure data access. We offer secure access on the Duke and King’s College campuses. All data analysis scripts and results files are available for review. https://moffittcaspi.trinity.duke.edu/research-topics/erisk

Netherlands Twin Register data may be accessed, upon approval of the data access committee, email: ntr.datamanagement.fgb@vu.nl.

Researchers will be able to obtain Texas Twins data through managed access. Requests for managed access should be sent to Dr. Elliot Tucker-Drob (tuckerdrob@utexas.edu) and Dr. Paige Harden (harden@utexas.edu), joint principal investigators of the Texas Twin Project.

Wisconsin Longitudinal study data can be requested following this form: https://www.ssc.wisc.edu/wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☑ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

<table>
<thead>
<tr>
<th>Sample size</th>
<th>For the Cog and NonCog GWAS, the effective sample sizes were estimated, following Mallard et al. 2020 (Supplementary Note). For each phenotype in the polygenic score analysis, all available data was used, and reported in Supplementary Table 11.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data exclusions</td>
<td>GWAS are based only on participants with European ancestry. For the PGS analyses, all available data was used, participants with a non-White/European ancestry were excluded, due to the low portability of PGS between different ancestry populations.</td>
</tr>
<tr>
<td>Replication</td>
<td>No replication was done. Polygenic score predictions were performed in several cohorts, cohort-specific and meta-analytic estimates are reported. See Supplementary Table 12 for details on which analyses were performed in which cohorts (PGS analyses reported in the manuscript were all performed in 2 to 5 cohorts). Individual cohorts results are plotted in Supplementary Figure 10 and 12 for cognitive performance and personality traits.</td>
</tr>
<tr>
<td>Randomization</td>
<td>n/a: We did not use an experimental design</td>
</tr>
<tr>
<td>Blinding</td>
<td>n/a: We did not use an experimental design</td>
</tr>
</tbody>
</table>

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & experimental systems

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ Antibodies</td>
<td></td>
</tr>
<tr>
<td>☒ Eukaryotic cell lines</td>
<td></td>
</tr>
<tr>
<td>☒ Palaeontology</td>
<td></td>
</tr>
<tr>
<td>☒ Animals and other organisms</td>
<td></td>
</tr>
<tr>
<td>☒ ☒ Human research participants</td>
<td></td>
</tr>
<tr>
<td>☒ Clinical data</td>
<td></td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ ChiP-seq</td>
<td></td>
</tr>
<tr>
<td>☒ Flow cytometry</td>
<td></td>
</tr>
<tr>
<td>☒ MRI-based neuroimaging</td>
<td></td>
</tr>
</tbody>
</table>

Human research participants

Policy information about studies involving human research participants

Population characteristics

Description of the cohorts, including participants population, is available in Supplementary Note, and Supplementary Tables 9-10.

Recruitment

Description of the cohorts, including participants recruitment, is available in Supplementary Note. Several cohorts under-represent individuals with a lower SES background, exclusion of non-European ancestry participants and participants not having provided genetic information is likely to have increased the bias towards higher educated individuals.

Ethics oversight

The National Longitudinal Study of Adolescent to Adult Health received IRB approval from the University of North Carolina. The E-Risk study received ethical approval from Duke University Campus IRB Protocol: 2018-0414B0630 The Environmental Risk Study of Twin Development and Replication Data Studies The Dunedin Study received ethical approval: 17/STH/25/AMOS Health and Disability Ethics Committees Ministry of Health 133 Molesworth Street PO Box 5013 Wellington 0800 4 ETHICS hdec@moh.govt.nz Ethical approval for NTR was provided by the Central Ethics Committee on Research Involving Human Subjects of the VU University Medical Center, Amsterdam, an Institutional Review Board certified by the U.S. Office of Human Research Protections (IRB number IRB-2991 under Federal-wide Assurance-3703; IRB/institute codes 94/105, 96/205, 99/068, 2003/182, 2010/359) and participants provided informed consent. The Texas Twin Project has received IRB approval from the University of Texas at Austin (Protocol Number 2014-11-0021), which was renewed on 11/20/2017. Ethical approval for usage of the Wisconsin Longitudinal Study data was provided by the Human Subjects Committee of the Faculty of Economics, Business Administration and Information Technology at the University of Zurich (OEC IRB # 2018-049).

Note that full information on the approval of the study protocol must also be provided in the manuscript.